Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Skulimowski, A.M.J. |
| Copyright Year | 2014 |
| Description | Author affiliation: Autom. Control Dept., AGH Univ. of Sci. & Technol., Krakow, Poland (Skulimowski, A.M.J.) |
| Abstract | Numerous attempts have been made to assess the complexity and predictability of a time series. In AI applications, the latter may be used to determine or classify the origin of an unknown signal. This paper presents the theoretical background to an empirical time series analysis methodology based on the monotonic aggregation transform. For any given time series, its extrema are assumed to contain more information than intermediate data, which is supported empirically for long-memory financial and technological data. Based on this assumption, properties of k-th order minima and maxima are studied as well as their mutual relations. The latter have allowed us to construct a binary decomposition tree and an extremal hull of a time series observation set. It will be proven that the natural characteristic of decomposition trees can be interpreted as an entropy function of the corresponding observation set. Furthermore, the maximum height as well as the sum of all node orders of a decomposition tree is a measure of its information contents. When considered as a function of a sliding time window of constant length in a stationary time series, the above characteristics give us clues as regards the predictability of the original time series, its differences or integrands. We will show the practical implications of the above method in analyzing various kinds of temporal data. |
| Starting Page | 694 |
| Ending Page | 700 |
| File Size | 934572 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781479965724 |
| ISSN | 10823409 |
| DOI | 10.1109/ICTAI.2014.109 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-11-10 |
| Publisher Place | Cyprus |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Time series analysis Vegetation Complexity theory Entropy Transforms Forecasting Finite element analysis forecasting time series monotonic aggregation transform complexity decomposition tree entropy of data sets |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|