Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Tomas, A. Chia-Chen Chang Scalettar, R. Zhaojun Bai |
| Copyright Year | 2012 |
| Abstract | The Determinant Quantum Monte Carlo (DQMC) method is one of the most powerful approaches for understanding properties of an important class of materials with strongly interacting electrons, including magnets and superconductors. It treats these interactions exactly, but the solution of a system of $N$ electrons must be extrapolated to bulk values. Currently $N \approx 500$ is state-of-the-art. Increasing $N$ is required before DQMC can be used to model newly synthesized materials like functional multilayers. DQMC requires millions of linear algebra computations of order $N$ matrices and scales as $N^3$. DQMC cannot exploit parallel distributed memory computers efficiently due to limited scalability with the small matrix sizes and stringent procedures for numerical stability. Today, the combination of multisocket multicore processors and GPUs provides widely available platforms with new opportunities for DQMC parallelization. The kernel of DQMC, the calculation of the Green's function, involves long products of matrices. For numerical stability, these products must be computed using graded decompositions generated by the QR decomposition with column pivoting. The high communication overhead of pivoting limits parallel efficiency. In this paper, we propose a novel approach that exploits the progressive graded structure to reduce the communication costs of pivoting. We show that this method preserves the same numerical stability and achieves 70\% performance of highly optimized {\tt DGEMM} on a two-socket six-core Intel processor. We have integrated this new method and other parallelization techniques into QUEST, a modern DQMC simulation package. Using 36 hours on this Intel processor, we are able to compute accurately the magnetic properties and Fermi surface of a system of $N=1024$ electrons. This simulation is almost an order of magnitude more difficult than $N \approx 500$, owing to the $N^3$ scaling. This increase in system size will allow, for the first time, the computation of the magnetic and transport properties of layered materials with DQMC. In addition, we show preliminary results which further accelerate DQMC simulations by using GPU processors. |
| Starting Page | 308 |
| Ending Page | 319 |
| File Size | 2473622 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781467309752 |
| ISSN | 15302075 |
| DOI | 10.1109/IPDPS.2012.37 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-05-21 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Computational modeling Matrix decomposition Multicore processing Program processors Materials Lattices Green products GPU Quantum Monte Carlo QRP multicore |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|