Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Kong, W.W. Ranganath, S. |
| Copyright Year | 2007 |
| Description | Author affiliation: Nat. Univ. of Singapore, Singapore (Kong, W.W.; Ranganath, S.) |
| Abstract | A common approach to extract "phonemes" of sign language is to use an unsupervised clustering algorithm to group the sign segments. However, simple clustering algorithms based on distance measures usually do not work well on temporal data and require complex algorithms. This paper presents a simple and effective approach to extract phonemes from American sign language (ASL) sentences. We first apply a semi-automatic segmentation algorithm which detects minimal velocity and maximal change of directional angle to segment the hand motion trajectory of signed sentences. We then extract, feature descriptors based on principal component analysis (PCA) to represent the segments efficiently. These high level features are used with k-means to cluster the segments to form phonemes. 25 continuously signed sentences from a native signer are used to perform the analysis. After phoneme transcription, we train hidden Markov models (HMMs) to recognize the sequence of phonemes in the sentences. We compare the recognition results from HMMs when the phonemes are labeled by our algorithm, and when they are labeled manually. On the 25 test sentences containing 173 segments, the average number of errors obtained with our approach and the manual approach to labeling phonemes was 24.0 and 33.8, respectively. |
| Starting Page | 1 |
| Ending Page | 5 |
| File Size | 162959 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781424409822 |
| DOI | 10.1109/ICICS.2007.4449647 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-12-10 |
| Publisher Place | Singapore |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Handicapped aids Clustering algorithms Data mining Change detection algorithms Hidden Markov models Principal component analysis Motion detection Feature extraction Performance analysis Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|