Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Gang Xiang Kreinovich, V. |
| Copyright Year | 2010 |
| Description | Author affiliation: Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968 (Kreinovich, V.) || Philips Healthcare, El Paso, Texas 79902 (Gang Xiang) |
| Abstract | In many practical situations, we have only partial information about the probabilities. In some cases, we have crisp (interval) bounds on the probabilities and/or on the related statistical characteristics. In other situations, we have fuzzy bounds, i.e., different interval bounds with different degrees of certainty. In a situation with uncertainty, we do not know the exact value of the desired characteristic. In such situations, it is desirable to find its worst possible value, its best possible value, and its “typical” value – corresponding to the “most probable” probability distribution. Usually, as such a “typical” distribution, we select the one with the largest value of the entropy. This works perfectly well in usual cases when the information about the distribution consists of the values of moments and other characteristics. For example, if we only know the first and the second moments, then the distribution with the largest entropy if the normal (Gaussian) one. However, in some situations, we know the entropy (= amount of information) of the distribution. In this case, the maximum entropy approach does not work, since all the distributions which are consistent with our knowledge have the exact sam e entropy value. In this paper, we show how the main ideas of the maximum entropy approach can be extended to this case. |
| Starting Page | 1 |
| Ending Page | 7 |
| File Size | 532341 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781424478590 |
| e-ISBN | 9781424478583 |
| e-ISBN | 9781424478576 |
| DOI | 10.1109/NAFIPS.2010.5548264 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-07-12 |
| Publisher Place | Canada |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Entropy Probability distribution Uncertainty Medical services Computer science Economic forecasting Probability density function |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|