Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Syed, F.U. Hao Ying Ming Kuang Okubo, S. Smith, M. |
| Copyright Year | 2006 |
| Description | Author affiliation: Sustainable Mobility Technol. & Hybrid Programs, Ford Motor Co., Dearborn, MI (Syed, F.U.) |
| Abstract | Environmental awareness has resulted in greater emphasis on developing more environmentally friendly and fuel efficient vehicles. Hybrid electric vehicles (HEVs) have been considered a viable option towards achieving these goals. Ford Motor Company developed a full hybrid electric vehicle with an e-CVT (electronically controlled continuously variable transmission) or power-split hybrid powertrain with an integrated motor and generator. The power-split hybrid system uses planetary gear sets to connect an engine, a generator, and a motor. This HEV powertrain exhibits great potential to improve fuel economy by enabling the engine to operate at its most efficient region independent of the vehicle speed. To achieve fuel economy improvements of the power-split hybrid system, high-voltage (HV) battery power management is critical. To control actual HV battery power in such vehicles, a sophisticated control system is essential which controls engine power and thereby engine speed to achieve the desired HV battery maintenance power. Conventional approaches use proportional-integral (PI) control systems to control the actual HV battery power in power-split hybrid system, which can sometimes result in either overshoots of engine speed and power or degraded response and settling times due to the nonlinearity of the power-split hybrid system. Such an overshoot is often objectionable to customers, which see engine speed overshoots as disconnect between the driver's request and the engine response. This issue comes from the fact that a complete high fidelity mathematical model for the power-split HEV system along with the environmental effects cannot be accurately modeled inside the controller. Therefore, a controller adaptable to nonlinear behavior and not requiring detailed knowledge of mathematical model of the plant is required to address such issues. Fuzzy control approaches can provide a way to cope with the limitations of the conventional controllers. We have developed a fuzzy control approach with minimal rules to intelligently control engine power and speed behavior in a powersplit HEV. This approach uses selective minimal rule-based fuzzy gain-scheduling to determine appropriate gains for the PI controller based on the system's operating conditions. The improvements result in the reduction of the overshoots without compromising system's response and settling times in comparison with the conventional linear PI controller. This paper describes the power-split hybrid vehicle's powertrain system and key subsystems. It also describes minimal rule-based fuzzy gain-scheduling PI controller and the formulation of minimal fuzzy rules required to achieve the desired behavior. This minimal rule-based fuzzy controller was implemented in a Ford Escape hybrid vehicle and was evaluated in the vehicle test environment for a comparative analysis of the results to show its effectiveness. The results clearly demonstrate that the designed minimal rule based fuzzy gains scheduling controller is capable of significantly improving the engine speed and power behavior in a power-split HEV without compromising the system's response and settling times |
| Starting Page | 284 |
| Ending Page | 289 |
| File Size | 3852469 |
| Page Count | 6 |
| File Format | |
| ISBN | 1424403626 |
| DOI | 10.1109/NAFIPS.2006.365423 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2006-06-03 |
| Publisher Place | Canada |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Fuzzy control Engines Hybrid electric vehicles Control systems Mechanical power transmission Batteries Time factors Mathematical model Power generation Hybrid power systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|