Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Schoning, L. Yun Li |
| Copyright Year | 2012 |
| Description | Author affiliation: School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK (Schoning, L.; Yun Li) |
| Abstract | Petrol Internal Combustion Engines (ICEs) use a spark ignition system which have a low energy efficiency of only 25 % to 35% [1]. ICEs also produce an excessive amount of exhaust emissions. The idea of a Homogeneous Charged Microwave Ignition (HCMI) system is to combine the advantages of a Spark Ignition (SI) and of a Compression Ignition (CI) system. This can make a significant impact on the fuel consumption and the emissions from the combustion process. Through the HCMI system, the fuel inside of the engine cylinder will ignite simultaneously, which will improve the engines efficiency significantly. Computational simulations of a HCMI system are complex and time-consuming and to carry out three dimensional results of multivariable changes a high computational capacity is required. To provide viable simulations this paper compares the location of the Eigenfrequency against the resonance frequency and explores the usability of three dimensional simulations. The Finite Element Method (FEM) simulation software COMSOL is used to model the engine cavity and different optimisation techniques to optimise the certain system design [2]. This paper also investigates the multivariable change of a HCMI system and illustrates the results in a three dimensional graphics. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 264807 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781467317221 |
| e-ISBN | 9781908549006 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-09-07 |
| Publisher Place | United Kingdom |
| Access Restriction | Subscribed |
| Rights Holder | CACSUK |
| Subject Keyword | Pistons Internal Combustion Engine Computational modeling Finite Element Method Resonant frequency Ignition Combustion Cavity resonators Eigenfrequency Homogeneous Charged Microwave Ignition Antennas |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|