Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Ameri, Hoda Fallahpour, Mojtaba Li, Mao-Kun Chew, Weng C. |
| Copyright Year | 2015 |
| Description | Author affiliation: University of Illinois at Urbana-Champaign, USA (Fallahpour, Mojtaba; Chew, Weng C.) || Tsinghua University, Beijing, China (Li, Mao-Kun) || University of Tehran, Iran (Ameri, Hoda) |
| Abstract | There is a growing interest to use plasmonic nanostructures for many applications including clean energy (e.g., solar cells), biological and chemical sensing. The optical behavior of metals is completely different from that observed at low frequencies. While at RF, metal behaves like a perfect electric conductor (with a negligible surface impedance) which is modeled by a surface electric current, at optical frequencies, the penetration of the waves cannot be ignored. Capturing this effect requires volumetric discretization of the structure. A plasmonic material has a complex permittivity with a negative real and positive imaginary parts (assuming $e^{‒iwt}$ time convention). This results in a penetration depth of 1/k0ni, where k0 is the wavevector of the background material and ni is the imaginary part of the refractive index of the plasmonic object. In optical wavelengths where the wavevector is very large, penetration depth becomes very small. Consequently, to model and consider the evanescent waves inside the plasmonic structures, a numerical method with a very fine meshing strategy near the plasmon-dielectric interface is required. Existing modeling numerical methods can be classified into differential equation methods (e.g., Finite Element Method (FEM) and Finite Difference Time Domain (FDTD)) and integral equation (IE) methods (e.g., method of moments or MoM). In differential equation methods, the whole space should be discretized which will result in a large number of unknowns. In contrast, the integral equation methods only discretize the desired objects. Hence, if there is a large white space between objects, integral equation methods are preferred over differential equation methods. However, as soon as the size of the problem increases, and consequently the number of unknowns rises, traditional IE methods such as MoM will consume a huge memory and calculation time increases drastically. Also, these methods have serious problem dealing with multiscale multiphysics problems. Equivalence principle algorithm (EPA), as an efficient domain decomposition method, invokes equivalence principle to decompose the solution domain into subdomains and then solve each of them independently. Later, it stitches them together to calculate the solution for the original problem. The entire procedure can be accelerated by application of fast techniques such as the multilevel fast multipole algorithm (MLFMA). It provides a level of parallelization and also alleviates the need to build and save large matrices. Therefore, EPA (relatively) needs lesser amount of memory and it provides more robust solution for multiscale multiphysics problems. Although EPA has been used for several applications, but its application for modeling and analyzing nanoplasmonic structures has not been reported before and it will be presented in here. |
| Starting Page | 64 |
| Ending Page | 64 |
| File Size | 104853 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781479978175 |
| DOI | 10.1109/USNC-URSI.2015.7303348 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-07-19 |
| Publisher Place | Canada |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|