Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zhuowen Tu |
| Copyright Year | 2007 |
| Description | Author affiliation: Univ. of California Los Angeles, Los Angeles (Zhuowen Tu) |
| Abstract | Generative model learning is one of the key problems in machine learning and computer vision. Currently the use of generative models is limited due to the difficulty in effectively learning them. A new learning framework is proposed in this paper which progressively learns a target generative distribution through discriminative approaches. This framework provides many interesting aspects to the literature. From the generative model side: (1) A reference distribution is used to assist the learning process, which removes the need for a sampling processes in the early stages. (2) The classification power of discriminative approaches, e.g. boosting, is directly utilized. (3) The ability to select/explore features from a large candidate pool allows us to make nearly no assumptions about the training data. From the discriminative model side: (1) This framework improves the modeling capability of discriminative models. (2) It can start with source training data only and gradually "invent" negative samples. (3) We show how sampling schemes can be introduced to discriminative models. (4) The learning procedure helps to tighten the decision boundaries for classification, and therefore, improves robustness. In this paper, we show a variety of applications including texture modeling and classification, non-photorealistic rendering, learning image statistics/denoising, and face modeling. The framework handles both homogeneous patterns, e.g. textures, and inhomogeneous patterns, e.g. faces, with nearly an identical parameter setting for all the tasks in the learning stage. |
| Starting Page | 1 |
| Ending Page | 8 |
| File Size | 1004585 |
| Page Count | 8 |
| File Format | |
| ISBN | 1424411793 |
| ISSN | 10636919 |
| DOI | 10.1109/CVPR.2007.383035 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-06-17 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Machine learning Training data Computer vision Power generation Sampling methods Boosting Image sampling Robustness Rendering (computer graphics) Statistics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|