Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Tuske, Zoltan Golik, Pavel Schluter, Ralf Ney, Hermann |
| Copyright Year | 2015 |
| Description | Author affiliation: Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany (Tuske, Zoltan; Golik, Pavel; Schluter, Ralf; Ney, Hermann) |
| Abstract | In the tandem approach, the output of a neural network (NN) serves as input features to a Gaussian mixture model (GMM) aiming to improve the emission probability estimates. As has been shown in our previous work, GMM with pooled covariance matrix can be integrated into a neural network framework as a softmax layer with hidden variables, which allows for joint estimation of both neural network and Gaussian mixture parameters. Here, this approach is extended to include speaker adaptive training (SAT) by introducing a speaker dependent neural network layer. Error backpropagation beyond this speaker dependent layer realizes the adaptive training of the Gaussian parameters as well as the optimization of the bottleneck (BN) tandem features of the underlying acoustic model, simultaneously. In this study, after the initialization by constrained maximum likelihood linear regression (CMLLR) the speaker dependent layer itself is kept constant during the joint training. Experiments show that the deeper backpropagation through the speaker dependent layer is necessary for improved recognition performance. The speaker adaptively and jointly trained BN-GMM results in 5% relative improvement over very strong speaker-independent hybrid baseline on the Quaero English broadcast news and conversations task, and on the 300-hour Switchboard task. |
| Starting Page | 596 |
| Ending Page | 603 |
| File Size | 249551 |
| Page Count | 8 |
| File Format | |
| e-ISBN | 9781479972913 |
| DOI | 10.1109/ASRU.2015.7404850 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-12-13 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Adaptation models Training Acoustics Hidden Markov models Robustness Artificial neural networks SAT MLP GMM log-Linear mixture model joint-training unsupervised adaptation CMLLR |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|