Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Glaude, Hadrien Enderli, Cyrille Pietquin, Olivier |
Copyright Year | 2015 |
Description | Author affiliation: Thales Airborne Systems, Elancourt, France (Enderli, Cyrille) || Univ. Lille, CRIStAL, UMR 9189, SequeL Team, Villeneuve d'Ascq, France (Glaude, Hadrien; Pietquin, Olivier) |
Abstract | Probabilistic Finite Automaton (PFA), Probabilistic Finite State Transducers (PFST) and Hidden Markov Models (HMM) are widely used in Automatic Speech Recognition (ASR), Text-to-Speech (TTS) systems and Part Of Speech (POS) tagging for language modeling. Traditionally, unsupervised learning of these latent variable models is done by Expectation-Maximization (EM)-like algorithms, as the Baum-Welch algorithm. In a recent alternative line of work, learning algorithms based on spectral properties of some low order moments matrices or tensors were proposed. In comparison to EM, they are orders of magnitude faster and come with theoretical convergence guarantees. However, returned models are not ensured to compute proper distributions. They often return negative values that do not sum to one, limiting their applicability and preventing them to serve as an initialization to EM-like algorithms. In this paper, we propose a new spectral algorithm able to learn a large range of models constrained to return proper distributions. We assess its performances on synthetic problems from the PAutomaC challenge and real datasets extracted from Wikipedia. Experiments show that it outperforms previous spectral approaches as well as the Baum-Welch algorithm with random restarts, in addition to serve as an efficient initialization step to EM-like algorithms. |
Starting Page | 71 |
Ending Page | 77 |
File Size | 290947 |
Page Count | 7 |
File Format | |
e-ISBN | 9781479972913 |
DOI | 10.1109/ASRU.2015.7404776 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2015-12-13 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Hidden Markov models Learning automata Probabilistic logic Method of moments Algorithm design and analysis Approximation algorithms Computational modeling non-negative matrix factorization Baum-welch learning automata spectral learning language models |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|