Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Jian-Ping Zhang Quan-Fei Ding Yong-Xia Dai Jian-Xing Ren |
| Copyright Year | 1973 |
| Abstract | This paper describes a strongly coupled calculation procedure for the particle dynamics in electrostatic precipitators (ESPs) subjected to the applied magnetic field with the statistical particle size distribution taken into account. The turbulent gas flow and the particle motion under external forces are modeled by using the commercial computational fluid dynamics code FLUENT. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier-Stokes equations, and the turbulence is modeled by using the turbulence model. An additional source term, which is obtained by solving a coupled system of the electromagnetic field and charge transport equations, is added to the gas flow equation to capture the effect of the electromagnetic field. The particle phase is simulated by using a discrete phase model. Different kinds of particles which follow the Rosin-Rammler distribution were simulated under different conditions, and the influence of the magnetic field density on the capture of a fine particle was investigated. In order to show the dust removal effect, the collection efficiency and the escaped particle size distribution were discussed in case of different applied magnetic fields. The particle trajectories inside the ESP were also given under the effect of both aerodynamic and electromagnetic forces. Numerical results in the wire-duct ESP show that the collection efficiency increases with the increase of the applied magnetic field, that the particle trajectory is more visible to the direction of the dust collection duct, and that the collection efficiency varies smoothly when the absolute value of the applied magnetic field trends to a certain size. Furthermore, the average diameter of escaping particles decreases and the dispersion for dust particles in different sizes increases with increasing applied magnetic field, and particle sizes are linearly decreasing with the magnetic field before the particle diameter is up to a certain size. |
| Sponsorship | IEEE Nuclear and Plasma Sciences Society |
| Starting Page | 569 |
| Ending Page | 575 |
| Page Count | 7 |
| File Size | 400555 |
| File Format | |
| ISSN | 00933813 |
| Volume Number | 39 |
| Issue Number | 1 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-01-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Mathematical model Trajectory Equations Aerodynamics Force Computational modeling Corona wire duct Applied magnetic field collection efficiency electrostatic precipitators (ESPs) gas–solid two-phase flow particle trajectories |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nuclear and High Energy Physics Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|