Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zhishun Wang Zhenya He Chen, J.D.Z. |
| Copyright Year | 1964 |
| Abstract | The time delay estimation (TDE) is an important issue in modern signal processing and it has found extensive applications in the spatial propagation feature extraction of biomedical signals as well. Due to the extreme complexity and variability of the underlying systems, biomedical signals are usually nonstationary, unstable and even chaotic. Furthermore, due to the limitations of the measurement environments, biomedical signals are often noise-contaminated. Therefore, the TDE of biomedical signals is a challenging issue. A new TDE algorithm based on the least absolute deviation neural network (LADNN) and its application experiments are presented in this paper. The LADNN is the neural implementation of the least absolute deviation (LAD) optimization model, also called unconstrained minimum L/sub 1/-norm model, with a theoretically proven global convergence. In the proposed LADNN-based TDE algorithm, a given signal is modeled using the moving average (MA) model. The MA parameters are estimated by using the LADNN and the time delay corresponds to the time index at which the MA coefficients have a peak. Due to the excellent features of L/sub 1/-norm model superior to L/sub p/-norm (p>1) models in non-Gaussian noise environments or even in chaos, especially for signals that contain sharp transitions (such as biomedical signals with spiky series or motion artifacts) or chaotic dynamic processes, the LADNN-based TDE is more robust than the existing TDE algorithms based on wavelet-domain correlation and those based on higher-order spectra (HOS). Unlike these conventional methods, especially the current state-of-the-art HOS-based TDE, the LADNN-based method is free of the assumption that the signal is non-Gaussian and the noises are Gaussian and, thus, it is more applicable in real situations. Simulation experiments under three different noise environments, Gaussian, non-Gaussian and chaotic, are conducted to compare the proposed TDE method with the existing HOS-based method. Real application experiment is conducted to extract time delay information between every two adjacent channels of gastric myoelectrical activity (GMA) to assess the spatial propagation characteristics of GMA during different phases of the migrating myoelectrical complex (MMC). |
| Sponsorship | IEEE Engineering in Medicine and Biology Society |
| Page Count | 9 |
| File Size | 388786 |
| Starting Page | 454 |
| Ending Page | 462 |
| File Format | |
| ISSN | 00189294 |
| Volume Number | 52 |
| Issue Number | 3 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2005-03-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Robustness Delay effects Delay estimation Bioelectric phenomena Neural networks Chaos Working environment noise Signal processing Signal processing algorithms Gaussian noise time delay estimation Gastric myoelectrical activity and myoelectrical migrating complex (MMC) least absolute deviation (LAD) neural network |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|