Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Haining Fan |
| Copyright Year | 1968 |
| Abstract | We show that the step “modulo the degree-n field generating irreducible polynomial” in the classical definition of the GF (2n) multiplication operation can be avoided. This leads to an alternative representation of the finite field multiplication operation. Combining this representation and the Chinese Remainder Theorem, we design bit-parallel GF (2n) multipliers for irreducible trinomials un + uk + 1 on GF (2) where 1 <; k ≤ n/2. For some values of n, our architectures have the same time complexity as the fastest bit-parallel multipliers-the quadratic multipliers, but their space complexities are reduced. Take the special irreducible trinomial u2k + uk + 1 for example, the space complexity of the proposed design is reduced by about 1/8, while the time complexity matches the best result. Our experimental results show that among the 539 values of n such that 4 <; n <; 1,000 and xn + xk + 1 is irreducible over GF(2) for some k in the range 1 <; k ≤ n=2, the proposed multipliers beat the current fastest parallel multipliers for 290 values of n when (n - 1)/3 ≤ k ≤ n/2: they have the same time complexity, but the space complexities are reduced by 8:4 percent on average. |
| Sponsorship | IEEE Computer Society Technical Committee on Distributed Process IEEE Computer Society Technical Committee on VLSI IEEE Technical Committee on Computer Architecture IEEE Computer Society |
| Starting Page | 343 |
| Ending Page | 352 |
| Page Count | 10 |
| File Size | 278784 |
| File Format | |
| ISSN | 00189340 |
| Volume Number | 65 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2016-02-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Polynomials Time complexity Logic gates Computer architecture Delays Mathematical model the Chinese Remainder Theorem Finite field multiplication polynomial basis the chinese remainder theorem |
| Content Type | Text |
| Resource Type | Article |
| Subject | Theoretical Computer Science Computational Theory and Mathematics Software Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|