Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zhao, Z.-Q. Glotin, H. Xie, Z. Gao, J. Wu, X. |
| Copyright Year | 1992 |
| Abstract | Recent studies have shown that sparse representation (SR) can deal well with many computer vision problems, and its kernel version has powerful classification capability. In this paper, we address the application of a cooperative SR in semi-supervised image annotation which can increase the amount of labeled images for further use in training image classifiers. Given a set of labeled (training) images and a set of unlabeled (test) images, the usual SR method, which we call forward SR, is used to represent each unlabeled image with several labeled ones, and then to annotate the unlabeled image according to the annotations of these labeled ones. However, to the best of our knowledge, the SR method in an opposite direction, that we call backward SR to represent each labeled image with several unlabeled images and then to annotate any unlabeled image according to the annotations of the labeled images which the unlabeled image is selected by the backward SR to represent, has not been addressed so far. In this paper, we explore how much the backward SR can contribute to image annotation, and be complementary to the forward SR. The co-training, which has been proved to be a semi-supervised method improving each other only if two classifiers are relatively independent, is then adopted to testify this complementary nature between two SRs in opposite directions. Finally, the co-training of two SRs in kernel space builds a cooperative kernel sparse representation (Co-KSR) method for image annotation. Experimental results and analyses show that two KSRs in opposite directions are complementary, and Co-KSR improves considerably over either of them with an image annotation performance better than other state-of-the-art semi-supervised classifiers such as transductive support vector machine, local and global consistency, and Gaussian fields and harmonic functions. Comparative experiments with a nonsparse solution are also performed to show that the sparsity plays an important role in the cooperation of image representations in two opposite directions. This paper extends the application of SR in image annotation and retrieval. |
| Sponsorship | IEEE Signal Processing Society |
| Page Count | 14 |
| File Size | 2053149 |
| Starting Page | 4218 |
| Ending Page | 4231 |
| File Format | |
| ISSN | 10577149 |
| Volume Number | 21 |
| Issue Number | 9 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-09-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Strontium Kernel Vectors Training Noise Sparse matrices Visualization sparse representation (SR) Co-training image annotation image retrieval semi-supervised learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|