Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Aggarwal, A.O. Raj, P.M. Baik-Woo Lee Myung Jin Yim Iyer, M. Wong, C.P. Tummala, R.R. |
| Copyright Year | 1999 |
| Abstract | Interconnect technologies between ICs and packages or boards have a significant impact on the IC performance and packaging density. Today, the interconnections are typically accomplished with either wire bonding or flip-chip solders. While both of these technologies are incremental, they also run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect might not satisfy the thermomechanical reliability requirements at very fine-pitches. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. This paper reports fine-pitch interconnection technologies using nano-structured nickel as primary interconnection material. The nano-grained nickels are produced by electroplating process. The primary nano-structured interconnects are assembled with different bonding methods to provide organic compatible low-temperature fabrication. Au-Sn and Sn-Cu are used for solder-based assembly of nano-nickel interconnections. Low modulus anisotropic conductive films (ACFs) are also used as an alternate bonding route of the solders. No underfilling is used in all the interconnect structures evaluated in this paper. Assembly are accomplished on different coefficient of thermal expansion (CTE) substrates including FR-4 with 18 ppm/degC, advanced organic substrates with 10 ppm/degC, novel low CTE (3 ppm/degC) substrates based on carbon-silicon carbide (C-SiC). The thermomechanical reliability of all the nano-interconnects assembled on different CTE substrates with different bonding approaches is evaluated by thermal shock testing and finite-element analysis. Nano-nickel interconnects bonded with the ACF showed the highest reliability withstanding 1500 cycles. In all cases, no apparent failure was observed in the primary nano-nickel metal interconnects. This technology is expected to be easily downscaled to submicrometer and nano-scale unlike the current solder technologies leading to true nano-interconnections. |
| Sponsorship | IEEE Components, Packaging, and Manufacturing Technology Society International Microelectronics Assembly and Packaging Society (IMAPS) |
| Starting Page | 341 |
| Ending Page | 354 |
| Page Count | 14 |
| File Size | 7623589 |
| File Format | |
| ISSN | 1521334X |
| Volume Number | 31 |
| Issue Number | 4 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-10-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Thermomechanical processes Nickel Bonding Assembly Integrated circuit packaging Wire Mechanical factors Conducting materials Nanostructured materials Fabrication thermomechanical reliability Anisotropic conductive film (ACF) failure analysis fine-pitch interconnects nano-structured interconnect solder |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|