Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Ming-Yi Tsai Chen-Yu Huang Chih-Yao Chiang Wen-Chin Chen Sheng-Shu Yang |
| Copyright Year | 1999 |
| Abstract | Regarding the application of the chip on glass (COG) with anisotropic conductive film (ACF) to the liquid crystal displays (LCDs), the problems with the warpage of COG packages, interfacial delamination, and increasing contact resistance of bumps, during or after thermal and moisture loading, are major reliability issues encountered in the industry. The goal in this paper is to investigate the effect of the parameters, such as bonding pressure and temperature during manufacturing, thermal and moisture expansion of the ACF, and its elastic modulus and fillets, associated with thermal cycling (from room temperature to 85 ), on the warpages of the ACF-bonded COG packages. The full-field Twyman-Green interferometry is used for measuring the warpages of the COG packages due to the fabrication with the various bonding pressure and temperature and during thermal cycling. Three-dimensional finite-element models (FEM) are used for calculating the warpage in terms of such parameters, and those results are compared with experimental observations in order to understand the mechanics. The results show that the tremendously saddle-warped shapes are found at the COG packages after manufacturing, and their maximum warpages increase with the bonding pressure but are insensitive to the bonding temperature. However, these large warpages have been obviously relaxed as the temperature goes beyond 50 during the first thermal cycling. After the first cycling, the warpages of the COG packages become much less severe and remain stably, then slightly increase with the temperature. The deformed behaviors of the COG package under the thermal loads have been resolved by comparing the FEM results with the experimental observations. The moisture-induced expansion strain of the saturated ACF in the condition of 29 /85%RH was determined to be 0.147% by means of the combination of experimental and theoretical analyses. It is also found that, for relatively thin fillets, the coefficient of thermal expansion (CTE) and moisture absorption of the ACF do not have any obvious influence on the warpages of the COG packages, but for relatively thick fillets they do somewhat. Moreover, the warpages of the COG package affected by ACF fillet thickness, elastic modulus, and CTE have been thoroughly studied by the finite-element analysis and the results have been interpreted in detail. Overall, for reducing the warpage of the COG package, two approaches are suggested: giving the packages at 85 preheated after manufacturing and precisely controlling low mismatch of CTE between chip and glass substrate, since both play significant roles. |
| Sponsorship | IEEE Components, Packaging, and Manufacturing Technology Society IEEE Components, Packaging and Manufacturing Technology Society |
| Starting Page | 665 |
| Ending Page | 673 |
| Page Count | 9 |
| File Size | 1602020 |
| File Format | |
| ISSN | 15213323 |
| Volume Number | 30 |
| Issue Number | 4 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-11-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Packaging Manufacturing Temperature Bonding Moisture Glass Thermal loading Thermal expansion Finite element methods Anisotropic conductive films warpage Anisotropic conductive adhesive chip-on-glass (COG) coefficient of thermal expansion (CTE) mismatch manufacturing moisture absorption thermal cycling |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|