Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | EDP Sciences |
|---|---|
| Author | Neil Vaytet Gilles Chabrier Edouard Audit Benoît Commerçon Jacques Masson Jason Ferguson Franck Delahaye |
| Abstract | Context. Star formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. The temperature and density in the centre eventually reach high enough values where fusion reactions can ignite, and the protostar is born. This sequence of events entails many physical processes, of which radiative transfer is of paramount importance. Simulated collapsing cores without radiative transfer rapidly become thermally supported before reaching high enough temperatures and densities, preventing the formation of stars.Aims. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. However, interstellar gas and dust opacities present large variations as a function of frequency, which can potentially be overlooked by grey models and lead to significantly different results. In this paper, we follow up on a previous paper on the collapse and formation of Larson’s first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson’s second core.Methods. We have made the use of a non-ideal gas equation of state as well as an extensive set of spectral opacities in a spherically symmetric fully implicit Godunov code to model all the phases of the collapse of a 0.1, 1, and 10 M⊙ cloud cores.Results. We find that, for an identical central density, there are only small differences between the grey and multigroup simulations. The first core accretion shock remains supercritical while the shock at the second core border is found to be strongly subcritical with all the accreted energy being transfered to the core. The size of the first core was found to vary somewhat in the different simulations (more unstable clouds form smaller first cores) while the size, mass, and temperature of the second cores are independent of initial cloud mass, size, and temperature.Conclusions. Our simulations support the idea of a standard (universal) initial second core size of ~3 × 10-3 AU and mass ~1.4 × 10-3 M⊙. The grey approximation for radiative transfer appears to perform well in one-dimensional simulations of protostellar collapse, most probably because of the high optical thickness of the majority of the protostar-envelope system. A simple estimate of the characteristic timescale of the second core suggests that the effects of using multigroup radiative transfer may be more important in the long-term evolution of the protostar. |
| Page Count | 15 |
| File Format | HTM / HTML PDF |
| ISSN | 00046361 |
| Alternate Webpage(s) | https://www.aanda.org/articles/aa/abs/2013/09/aa21423-13/aa21423-13.html |
| e-ISSN | 14320746 |
| Journal | Astronomy & Astrophysics |
| Volume Number | 557 |
| DOI | 10.1051/0004-6361/201321423 |
| Language | English |
| Publisher | EDP Sciences |
| Publisher Date | 2013-09-01 |
| Access Restriction | Open |
| Rights Holder | © ESO, 2013 |
| Subject Keyword | stars: formation methods: numerical hydrodynamics radiative transfer stars: protostars stars: formation / methods: numerical / hydrodynamics / radiative transfer / stars: protostars |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|