Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | EDP Sciences |
|---|---|
| Author | U. A. Yıldız L. E. Kristensen E. F. van Dishoeck I. San José-García A. Karska D. Harsono M. Tafalla A. Fuente R. Visser J. K. Jørgensen M. R. Hogerheijde |
| Abstract | Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations. Aims. The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines. Methods. Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes.Results. The 12CO 10–9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2–10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is dispersed. Models of the collapse and evolution of protostellar envelopes reproduce the C18O results well, but underproduce the 13CO and 12CO excitation temperatures, due to lack of UV heating and outflow components in those models. The H2O 110 − 101/CO 10–9 intensity ratio does not change significantly with velocity, in contrast to the H2O/CO 3–2 ratio, indicating that CO 10–9 is the lowest transition for which the line wings probe the same warm shocked gas as H2O. Modeling of the full suite of C18O lines indicates an abundance profile for Class 0 sources that is consistent with a freeze-out zone below 25 K and evaporation at higher temperatures, but with some fraction of the CO transformed into other species in the cold phase. In contrast, the observations for two Class I sources in Ophiuchus are consistent with a constant high CO abundance profile. Conclusions. The velocity resolved line profiles trace the evolution from the Class 0 to the Class I phase through decreasing line intensities, less prominent outflow wings, and increasing average CO abundances. However, the CO excitation temperature stays nearly constant. The multiple components found here indicate that the analysis of spectrally unresolved data, such as provided by SPIRE and PACS, must be done with caution. |
| Page Count | 46 |
| File Format | HTM / HTML PDF |
| ISSN | 00046361 |
| Alternate Webpage(s) | https://www.aanda.org/articles/aa/abs/2013/08/aa20849-12/aa20849-12.html |
| e-ISSN | 14320746 |
| Journal | Astronomy & Astrophysics |
| Volume Number | 556 |
| DOI | 10.1051/0004-6361/201220849 |
| Language | English |
| Publisher | EDP Sciences |
| Publisher Date | 2013-08-01 |
| Access Restriction | Open |
| Rights Holder | © ESO, 2013 |
| Subject Keyword | astrochemistry stars: formation stars: protostars ISM: molecules techniques: spectroscopic astrochemistry / stars: formation / stars: protostars / ISM: molecules / techniques: spectroscopic |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|