Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Directory of Open Access Journals (DOAJ) |
|---|---|
| Author | Mondher Bouazizi Tomoaki Ohtsuki |
| Abstract | With the rapid growth of online social media content, and the impact these have made on people's behavior, many researchers have been interested in studying these media platforms. A major part of their work focused on sentiment analysis and opinion mining. These refer to the automatic identification of opinions of people toward specific topics by analyzing their posts and publications. Multi-class sentiment analysis, in particular, addresses the identification of the exact sentiment conveyed by the user rather than the overall sentiment polarity of his text message or post. That being the case, we introduce a task different from the conventional multi-class classification, which we run on a data set collected from Twitter. We refer to this task as ``quantification.”By the term ``quantification,”we mean the identification of all the existing sentiments within an online post (i.e., tweet) instead of attributing a single sentiment label to it. For this sake, we propose an approach that automatically attributes different scores to each sentiment in a tweet, and selects the sentiments with the highest scores which we judge as conveyed in the text. To reach this target, we added to our previously introduced tool SENTA the necessary components to run and perform such a task. Throughout this work, we present the added components; we study the feasibility of quantification, and propose an approach to perform it on a data set made of tweets for 11 different sentiment classes. The data set was manually labeled and the results of the automatic analysis were checked against the human annotation. Our experiments show the feasibility of this task and reach an F1 score equal to 45.9%. |
| e-ISSN | 21693536 |
| DOI | 10.1109/ACCESS.2018.2876674 |
| Journal | IEEE Access |
| Volume Number | 6 |
| Language | English |
| Publisher | IEEE |
| Publisher Date | 2018-01-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Twitter Sentiment Analysis Machine Learning |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|