Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Kang, Young-Seok Rhee, Dong-Ho Kim, Chun-Taek Cha, Bong-Jun |
| Copyright Year | 2013 |
| Abstract | Design optimization of unshrouded rotor tip cavity of a high pressure turbine stage with low aspect ratio was carried out to maximize the turbine stage efficiency. Cavity shapes were parameterized with 4 design variables including rim thickness, cavity depth, cavity front blend radius and cavity aft blend radius. Initially the CCD method was utilized for sampling experimental points and the Kriging method was chosen to construct an approximation model. The optimum points derived from the approximation model were assessed by CFD analyses to verify the approximation model. The approximation model was refined repeatedly by adding more experiment points to minimize difference of CFD result and predicted value from the approximation model at the optimum point. The optimization result showed that there is an optimum ratio of cavity depth to tip clearance height, while the optimum design suggests cavity front blend radius and cavity aft blend radius be as small as possible within the design range. As the tip clearance height increases, the optimized tip cavity depth increases. However, the rim thickness has little effect on the optimum tip cavity depth. Without the tip cavity, leakage flow at fore part of the blade suction surface develops large vortex flow from the starting point of the unguided turning region due to adverse pressure gradient. The tip cavity prevents the early leakage flow from flow to the suction surface, which suppresses the leakage flow dissipation to the loss. It results in efficiency improvement. The effect of the tip cavity on the efficiency increases at the larger tip clearance. On the other hand, the cavity rim thickness effect on the efficiency becomes noticeable when the tip cavity depth is over than the optimum value. The rim thickness effect mainly appears on the tip leakage flow after the blade throat. The leaked flow after the blade throat generates a high loss region near the blade tip, especially when the rim thickness is small. The loss from the thick tip cavity rim gradually increases as the tip clearance increases. However, the rim thickness effect is most sensitive when the tip clearance is small. The loss generation mechanism due to the rim thickness is totally different to the tip cavity depth effects on the total pressure loss. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791856079 |
| DOI | 10.1115/TBTS2013-2079 |
| Conference Proceedings | ASME 2013 Turbine Blade Tip Symposium |
| Language | English |
| Publisher Date | 2013-09-30 |
| Publisher Place | Hamburg, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Suction Approximation Blades Computational fluid dynamics Rotors Clearances (engineering) Pressure gradient Flow (dynamics) Pressure Optimization Design Cavities High pressure (physics) Energy dissipation Shapes Vortex flow Leakage flows Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|