Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Mamaev, B. I. Petukhovsky, M. M. Pozdnyakov, A. V. |
| Copyright Year | 2013 |
| Abstract | Blade shrouding gives an opportunity to increase the HPT (high pressure turbine) first stage efficiency by 2–3 %. However, if high gas temperature and high circumferential velocity are at the stage, shrouding can be problematic due to load increasing at blade/disk attachment and high temperature of the shroud itself. To make blade/disk attachment more reliable the shroud axial width has to be decreased by increasing a relative pitch of airfoil cascades t (t = t / b, where t – pitch, b – chord) at the blade tip span. According to experience for a flow with β1 = 50 – 85°, M2 = 0.8 – 1, and Re = (0.8 – 1)•106 high efficient cascades with t = 0.93 – 1.05 can be designed. Application of such a profiling for GTE (gas turbine engine) turbine is demonstrated here. In the turbine meridian flow path the blade was drastically tapered to the tip (tip width was 53 % of the mean width and 46 % of the hub width). To lighten the blade a partial shrouding can be also applied. Model turbine tests showed that local cuts at the front shroud area and the aft shroud area at the airfoil pressure side influenced the efficiency weakly. Required shroud temperature is provided with a cooling. The aircraft turbine with a governed cooling system and a radial clearance control is an example here. In this case the shroud had 3 labyrinth ribs. The shrouding decreased radial clearance by 0.8 mm at main design modes that increased efficiency by ∼ 1.5 %. To cool down the shroud the air downstream the compressor was fed into the cavity behind the front labyrinth rib. At maximal mode with full cooling the relative coolant mass flow (to the compressor mass flow) was mc = 1.3 % and gas leakages through the labyrinth were 0.2 %. It gave acceptable mixed temperature of 530°C in the cavity over the shroud. At cruise high altitude mode and a lower gas temperature and partial cooling with mc = 0.4 % and gas leakages of 0.1 % the mixed temperature also did not exceed 530°C over the shroud. The assessment with taking into account changes of the clearance, the coolant mass flow, and gas leakages showed that the shrouding provided the engine economy improvement by 0.7 – 0.9 % for both modes. For GTPU (gas turbine power unit) the first blade shrouding can be more complicated. However, even the slight turbine efficiency increase provides considerable profits due to GTPU huge power output and long term running. So, when GTE and GTPU designing starts, it is reasonable to consider the turbine first blade shrouding. Here the integral evaluation criterion, which includes the assessment of a possible income from the unit full life cycle running, has to be applied. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791856079 |
| DOI | 10.1115/TBTS2013-2001 |
| Conference Proceedings | ASME 2013 Turbine Blade Tip Symposium |
| Language | English |
| Publisher Date | 2013-09-30 |
| Publisher Place | Hamburg, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Economics Cycles Temperature Cooling Blades Clearances (engineering) Airfoils Cooling systems Compressors High temperature Flow (dynamics) Pressure Engines Stress Design Cavities High pressure (physics) Gas turbines Chords (trusses) Coolants Disks Aircraft Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|