Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Sakai, Shinsuke Maeda, Jyunki Takanashi, Masahiro Satoshi, Izumi |
| Copyright Year | 2012 |
| Abstract | A reliability-based approach can play an important role in avoiding excessive conservative design for piping. We showed a formulation for applying the limit state function method to reliability-based fatigue design at the previous PVP conference. Using this method, the reliability can be expressed by two dominant parameters: the distribution of equivalent stress and the distribution of fatigue life. If the equivalent stress under stationary random loading can be related to some specific spectrum parameters, it is expected that reliability-based fatigue design can be achieved under random loading. Fatigue damage under random loading is usually estimated using Miner’s law together with the SN diagram. In applying Miner’s law, the random wave is decomposed to the fatigue range using some counting method. The rainflow cycle counting (RFC) method is widely used as a counting method. In view of design application, however, the estimation of fatigue damage from spectrum characteristics is important, and the RFC method is not necessarily suitable for this purpose because it is rather difficult to use in the analytical treatment. Fortunately, it has been shown that the level crossing counting (LCC) method provides a more conservative estimation when compared with the RFC method and the analytical treatment for the evaluation is available. In this paper, we will show a procedure for reliability-based fatigue design which evaluates fatigue damage using the LCC method, spectrum characteristics and Miner’s law. |
| Sponsorship | Pressure Vessels and Piping Division |
| Starting Page | 789 |
| Ending Page | 796 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791855027 |
| DOI | 10.1115/PVP2012-78475 |
| Volume Number | Volume 3: Design and Analysis |
| Conference Proceedings | ASME 2012 Pressure Vessels and Piping Conference |
| Language | English |
| Publisher Date | 2012-07-15 |
| Publisher Place | Toronto, Ontario, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Design Cycles Fatigue life Fatigue design Fatigue Reliability Pipes Waves Fatigue damage Stress |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|