Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Hassan, O. Hassan, I. |
| Copyright Year | 2015 |
| Abstract | This paper presents experimental investigations of the effect of scheme exit height and double jet injection on the film cooling performance of a Micro-Tangential-Jet (MTJ) scheme. The investigations were conducted over a gas turbine vane pressure side using the transient Thermochromic Liquid Crystal technique. The suction side investigations are presented in Part II of the present paper. The MTJ scheme is a micro-shaped scheme designed so that the micro-sized secondary jet is supplied tangentially to the vane surface. The scheme combines the benefits of micro jets and tangential injection. In order to investigate the effect of scheme exit height, one row of the MTJ scheme with 1.0 hole diameter exit height and another row with 1.5 hole diameter exit height were investigated. Meanwhile, to investigate the effect of double injection, one row of the MTJ scheme in staggered arrangement with one row of fan-shaped scheme was investigated. The investigations were conducted at various blowing ratios, calculated based on the scheme exit area. The average density ratio, turbulence intensity and Reynolds number were 0.93, 8.5, and 1.4E+5, respectively. The investigations showed that the smaller the exit height, the better the film cooling performance. Meanwhile, double injecting the secondary stream from MTJ and shaped schemes did not result in significant film cooling enhancement due to the enhanced turbulence over the vane surface. |
| Sponsorship | Power Division |
| File Format | |
| ISBN | 9780791856604 |
| DOI | 10.1115/POWER2015-49131 |
| Volume Number | ASME 2015 Power Conference |
| Conference Proceedings | ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum |
| Language | English |
| Publisher Date | 2015-06-28 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Suction Turbulence Gas turbines Reynolds number Jets Film cooling Pressure Density Liquid crystals Transients (dynamics) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|