Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Jaron, J. Peck Amanda, D. Smith |
| Copyright Year | 2015 |
| Abstract | Climate change can have a large effect on thermoelectric power generation. Typical thermoelectric power plants rely on water to cool steam in the condenser in order to produce electricity. Increasing global temperatures can increase average water temperatures as well as decrease the amount of water available for cooling due to evaporation. It is important to know how these parameters can affect power generation and efficiency of power systems, especially when assessing the water needs of a plant for a desired power output and whether a site can fulfill those needs. This paper explains the development of a model that shows how power and efficiency are affected due to changing water temperature and water availability for plants operating on a Rankine cycle. Both a general model of the simple Rankine cycle as well as modifications for regeneration and feedwater heating are presented. Power plants are analyzed for two different types of cooling systems: once-through cooling and closed circuit cooling with a cooling tower. Generally, rising temperatures in cooling water have been found to lower power generation and efficiency. Here, we present a method for quantifying power output and efficiency reductions due to changes in cooling water flow rates or water temperatures. Using specified plant parameters, such as boiler temperature and pressure, power and efficiency are modeled over a 5°C temperature range of inlet cooling water. It was found that over this temperature range, power decrease ranged from 2–3.5% for once through cooling systems, depending on the power system, and 0.7% for plants with closed circuit cooling. This shows that once-through systems are more vulnerable to changing temperatures than cooling tower systems. The model is also applied to Carbon Plant, a coal fired power plant in Utah that withdraws water from the Price River, to show how power and efficiency change as the temperature of the water changes using USGS data obtained for the Price River. The model can be applied to other thermoelectric power stations, whether actual or proposed, to investigate the effects of water conditions on projected power output and plant efficiency. |
| Sponsorship | Power Division |
| File Format | |
| ISBN | 9780791856604 |
| DOI | 10.1115/POWER2015-49097 |
| Volume Number | ASME 2015 Power Conference |
| Conference Proceedings | ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum |
| Language | English |
| Publisher Date | 2015-06-28 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Temperature Cooling Condensers (steam plant) Circuits Cooling systems Boilers Rivers Evaporation Modeling Water temperature Carbon Flow (dynamics) Pressure Climate change Power systems (machinery) Heating Rankine cycle Coal Steam Energy generation Feedwater Power stations Cooling towers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|