Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Lambert, Anaïs Do, Anh-Tuan Felix-Henry, Antoine Grosjean, François |
| Copyright Year | 2012 |
| Abstract | The development of Ultra Deep Water (UDW) oil and gas fields, down to 3000 m and beyond, requires high specification flowline and riser systems. At these depths, the flexible pipes must withstand high axial loads and severe dynamic loadings generated by currents, waves and vessel motions. Moreover, the constraints generated by the dynamic loadings are often combined to corrosion issues linked to the presence of CO2 and H2S. In case of sour service application, the structural layers of a classical flexible pipe require the use of steel with reduced mechanical properties compared to a sweet service application. The combination of UDW and sour service applications consequently lead to a riser design of considerable top tension. The main challenges of such applications are the suspended weight and the fatigue / corrosion performances. Carbon fiber composite have demonstrated high specific strength and outstanding corrosion and fatigue damage resistance. The use of carbon fiber composite instead of conventional steel for the tensile armour layers of flexible pipes represents a great alternative for the development of UDW applications combined with sour service conditions. Technip has been engaged for a number of years in the development and qualification program of Carbon Fiber Composite (CFC) Armour. In 2011, an important step has been passed with the successful realization of a full-scale tension-flexion dynamic test. The program of the full-scale dynamic test is based on a representative Brazilian offshore project, a typical UDW application. The CFC prototype structure was designed considering a 9” gas export riser installed at a water depth of 2140m, in free hanging configuration. The riser is made of 2 parts: a top riser with CFC armours and a bottom riser with steel armours. 1.8 millions of cycles were performed without damage, combining internal pressure, tensile loading and bending cycling. The whole test was monitored by acoustic emission to detect the potential damage of the CFC armours. After explaining the advantages of CFC structures compared to traditional steel structures, the paper will focus on the realization of the full-scale dynamic test program. It will detail the design and manufacture of the prototype structure, the construction of the test program representative of the offshore conditions first and then extended to more severe loadings. The paper will also present fatigue analysis and the construction of the CFC fatigue curves. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| Starting Page | 117 |
| Ending Page | 125 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791844908 |
| DOI | 10.1115/OMAE2012-83130 |
| Volume Number | Volume 3: Pipeline and Riser Technology |
| Conference Proceedings | ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2012-07-01 |
| Publisher Place | Rio de Janeiro, Brazil |
| Access Restriction | Subscribed |
| Subject Keyword | Water Cycles Carbon dioxide Natural gas fields Fatigue analysis Waves Design Armor Weight (mass) Tension Risers (casting) Damage Currents Acoustic emissions Construction Vessels Mechanical properties Fatigue Steel Pressure Stress Pipeline risers Carbon fibers Composite materials Corrosion Ocean engineering Pipes Engineering prototypes Fatigue damage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|