Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Celso, K. Morooka Mauricio, J. H. Suzuki Paulo, S. D. Pereira |
| Copyright Year | 2010 |
| Abstract | The ever increase of global demand for petroleum and natural gas brings needs to discover new petroleum fields. Particularly in the Brazilian coast, these discoveries are located on more and more remote areas combined with harsh and aggressive petroleum fluid production, such as the case of recently announced pre-salt petroleum fields. Development of offshore systems for field production in this scenario demands sophisticated and innovative technological solutions. It brings the necessity for developments of frontier technologies to make viable design of oil and gas production systems to be applied for ultra deep water depth applications. Production riser is a very critical component of most offshore petroleum production systems. Riser acts as a physical connection between subsea wells and floating production facility at the sea surface. It conducts the oil and gas production, and sometimes, fluid or gas for injection into the petroleum reservoir. Wellhead control commands are also guided between the floating platform and the subsea system throughout the riser system. In the literature, many different riser systems have been proposed and extensively discussed for ultra deep water applications. Among others configurations, Steel Catenary Riser (SCR) appears as a technically feasible and economically viable solution. This system is comprised with a free hanging steel pipe, suspended from the platform directed to the wellhead in a catenary shape. In ultra deep water, the riser weight itself commonly is the limitation for application of this type of riser system. Once it requires a much more expensive floating production platform with larger capacity. Furthermore, it also can cause high concentrated stresses in some regions along the riser structure. Catenary shaped risers with lighter material such as Aluminum seem to be a very attractive alternative due to the great riser weight reduction observed. The present paper describes and proposes procedures for the design and operation of petroleum production riser system for ultra deep water application to produce high flow rate of oil and gas in a typical pre-salt petroleum field offshore Brazil condition. Results and discussions are shown through comparisons for catenary riser systems composed by steel pipe and other kind of lighter material. Case studies are conducted for water depth up to 3000 meters by parametric analysis. Current and waves effects along with floating platform motions and riser geometries are analyzed in order to identify critical conditions and to depict feasible solutions. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| Starting Page | 263 |
| Ending Page | 269 |
| Page Count | 7 |
| File Format | |
| ISBN | 9780791849095 |
| DOI | 10.1115/OMAE2010-20415 |
| e-ISBN | 9780791838730 |
| Volume Number | 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 1 |
| Conference Proceedings | ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2010-06-06 |
| Publisher Place | Shanghai, China |
| Access Restriction | Subscribed |
| Subject Keyword | Water Seas Aluminum Production facilities Steel Flow (dynamics) Waves Petroleum Stress Pipeline risers Design Shorelines Fluids Deepwater development Steel catenary risers Weight (mass) Ocean engineering Shapes Risers (casting) Wells Pipes Hydrocarbon reservoirs Natural gas Manufacturing systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|