Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Gao, Tianyi Bahgat, G. Sammakia Geer, James Murray, Bruce Tipton, Russell Schmidt, Roger |
| Copyright Year | 2015 |
| Abstract | The heat dissipated by electronic equipment inside data centers is increasing at a rapid rate due to the increasing of performance requirement and package density. This ever increasing power leads to critical challenges of thermal management for these high power density data centers. Energy consumption is also a key issue for high density data centers. Roughly 1.5% of all U.S. electricity consumption in the year 2006 was related to data centers, while that number increased to 2% by the year 2010. In 2013, U.S. data centers consumed approximately 91 billion kilowatt-hours of electricity. This amount of the electricity equals the annual output of 34 500-megawatt coal-fired power plants [1]. Cooling systems constitute a significant portion of the energy consumption of data centers, being approximately 25%∼35% of the total energy usage. Therefore, there is a large potential to save energy by optimizing current existing cooling systems and investigating new cooling technologies, and, at the same time, improving the overall cooling capacity and efficiency. This paper describes and investigates a hybrid cooling technology which utilizes in row coolers in existing raised floor air cooled data centers. The in row cooler functions as a liquid-to-air heat exchanger. In addition to the traditional raised floor cold aisle-hot aisle arrangements, the in row cooler is installed between the IT equipment to enable delivering the liquid coolant medium closer to the IT equipment. The in row coolers intake the hot air from the hot aisle, condition it, and supply the chilled air to the cold aisle. Thus, by extracting a large portion of the heat more directly into the cooling liquid through the in row coolers compared with the perimeter CRAH unit, the overall cooling performance and efficiency can potentially be improved. CFD models for an in row cooler and a representative data center room are developed. Experimentally characterized performance data are used to calibrate and validate the models. The models are then used to conduct a detailed computational analysis to assess the effectiveness of different arrangement configurations of in row cooler units in two rows of racks along one cold aisle. The detailed performance of the entire cold aisle is characterized using the rack inlet air temperature and a temperature nonuniformity factor. The impact of CRAH location and room layout are also investigated. This study is based on a practical problem and the corresponding results and analysis provide basic installation and design guidelines for future equipment upgrading in certain parts of the data center. |
| Sponsorship | Electronic and Photonic Packaging Division |
| File Format | |
| ISBN | 9780791856888 |
| DOI | 10.1115/IPACK2015-48069 |
| Volume Number | Volume 1: Thermal Management |
| Conference Proceedings | ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2015-07-06 |
| Publisher Place | San Francisco, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Power density Energy consumption Temperature Electronic equipment Cooling Computational fluid dynamics Coolers Cooling systems Heat exchangers Density Design Data centers Heat Coal Coolants Power stations Thermal management |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|