Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Sean, M. Kissick Wang, Hailei |
| Copyright Year | 2018 |
| Abstract | As research continues into the generation IV advanced nuclear reactors, exploration of liquid sodium as a coolant, or Sodium Fast Reactors (SFRs), coupled to supercritical CO2 (sCO2) Brayton cycles are currently underway. Liquid sodium offers unique and beneficial fluid properties that can achieve higher efficiencies and longer equipment lifespans compared to conventional water cooled reactors. Coupling sodium with sCO2 matches well with sodium’s temperature profile and is less reactive with sodium when compared to water used in standard Rankine cycles. To achieve commercial viability, methods for developing diffusion-bonded Hybrid Compact Heat Exchangers (H-CHX) to couple SFRs with sCO2 Brayton cycles are being developed. This paper includes thermal-hydraulic analysis of these fluids to quantify thermal and pressure stresses within the H-CHX for use in determining a structurally sound design. Two models for predicting the temperature profiles within a practical H-CHX channel design are presented. The first is a 1-D heat transfer model employing heat transfer correlations to provide both bulk fluid and wall temperatures. The second is a 3-D computational fluid dynamics model (CFD) providing a three-dimensional temperature profile, but at a significantly increased simulation time. By comparing the results of the two models for specific design conditions, significant temperature deviation is shown between the models at a short channel length of 10 cm. However, for longer channel lengths, although the 1-D model neglected the strong axial conduction on the sodium side, it generally shows good agreement with the CFD model. Thus, for any practical H-CHX designs, the findings reveal both simulation methods can be used to extrapolate the temperature gradient along the channel length for use in designing a H-CHX, as well as predicting the overall size and mass of the heat exchanger for component costing. |
| File Format | |
| ISBN | 9780791852118 |
| DOI | 10.1115/IMECE2018-86682 |
| Volume Number | Volume 8A: Heat Transfer and Thermal Engineering |
| Conference Proceedings | ASME 2018 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2018-11-09 |
| Publisher Place | Pittsburgh, Pennsylvania, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Temperature Computer simulation Computational fluid dynamics Carbon dioxide Heat exchangers Temperature profiles Brayton cycle Diffusion (physics) Pressure Stress Temperature gradient Design Heat conduction Wall temperature Fluids Supercritical carbon dioxide Sodium Simulation Rankine cycle Coolants Nuclear reactors Heat transfer Sodium fast reactors |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|