Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ribeiro, A. Vilarinho, C. Araújo, J. Carvalho, J. |
| Copyright Year | 2017 |
| Abstract | Wastes represent nowadays, one of the major concerns for modern societies and for the environment, either by the wastage of raw materials and also by the existence of poor management systems that can originate and contaminate the ground water and air, and therefore, change the environment irreversibly. Waste management policies enhance the basic principles of prevention, which are the reduction in origin, followed by its recovery through recycling or energy recovery, in order to reduce the environmental and health impacts of wastes. Refuse Derived Fuel (RDF) is a solid fuel made after basic processing steps or techniques that increase the calorific value of municipal solid waste (MSW), commercial or industrial waste materials. Therefore, energy production from RDF can provide economic and environmental benefits, as reduces the amount of wastes sent to landfill and allows the energy recovery from a renewable source. In this work, it was studied the gasification of RDF collected in a Portuguese company, using steam and air as gasifying agents. This study intended to evaluate the effect of temperature and different molar ratios of both agents in gas production, gas composition and mass conversion of RDF. Physical and chemical composition of RDF was determined according to EN 15359:2011. Results showed that RDF has high quality for thermal valorization being registered high values of Low Heating Value (LHV) (24330 kJ/kg), carbon content (56.2%) and volatile matter content (77.2%). Experiments of RDF gasification were performed in a laboratory scale fixed bed gasifier, under different conditions. The effect of reaction temperature was studied at 750°C and 850°C. Gasification experiments with steam were executed at S/B feeding molar ratios ranging from 0.5 to 1.5 and the ones performed with air ranging from ER 0.2 to 0.6. Results showed that, for the same operational conditions, the rise of gasification temperature improved gas production ratio (Nm3/kg RDF), gas LHV and mass conversion. Results also proved that steam gasification achieved higher LHV values compared with gasification using air in optimal conditions, 9.4 and 9.8 MJ/m3, respectively. The gasification of RDF using steam at S/B ratio of 1.0 enables the production of syngas with 51% of hydrogen (H2), 32% of carbon dioxide (CO2), 11% of carbon monoxide (CO) and 6% of methane (CH4) (in N2 free basis). The increasing of steam to RDF molar ratio, increased the contents of H2 and CO2, while the content of CO, CH4 and heating value decreased. Regarding to gas production ratio the utilization of air, especially at ER of 0.6, induced the formation of 1.5 m3 gas/kg RDF. Instead, steam gasification only allowed the production of 0.5 m3 gas/kg RDF. Mass conversion and carbon conversion achieved almost 100% in air gasification at highest molar ratio. |
| File Format | |
| ISBN | 9780791858417 |
| DOI | 10.1115/IMECE2017-71268 |
| Volume Number | Volume 6: Energy |
| Conference Proceedings | ASME 2017 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2017-11-03 |
| Publisher Place | Tampa, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Methane Temperature Hydrogen Solid wastes Carbon dioxide Energy recovery Raw materials Fuels Sanitary landfills Carbon Syngas Waste management Municipal solid wastes Groundwater Industrial wastes Heating Steam Energy generation Recycling Fuel gasification |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|