Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tekes, Ayse |
| Copyright Year | 2017 |
| Abstract | In this study, two degrees of freedom planar compliant five-bar mechanism design is explored and synthesized to achieve a desired trajectory and to perform various defined tasks. The mechanism consists of five rigid links (including the ground) connected by the compliant large deflecting short beam joints and it is excited by the applied torques at the base links. The compliant five bar mechanism has not been explored in the literature for either a path tracking task or a function generation problem. The novelty of the compliant five bar mechanism presented in this paper is its large deflecting/rotating pivots joining the mechanism links. The mathematical model of the compliant five-bar mechanism is derived by using vector loop closures and dynamic inertia equations of the mechanism links. The dynamic response of the mechanism is investigated under the applied torques to the corresponding base links, using numerical 4th order Runge-Kutta methods. Compliant joints are represented by their equivalent torsional spring parameters so that the nonlinear large deflection equations of short beam joints are eliminated from the kinematic equations of the system using its equivalent Pseudo Rigid Body Model (PRBM). The torsional spring constants can be obtained, either by using nonlinear exact mathematical equations or by using geometrically nonlinear Finite Element Method software. The scope of this research is to derive a mathematical model of the system and to analyze the compliant five bar mechanism including the controller design for arbitrary predefined tasks to achieve the desired path for the end effector. The compliant five-bar mechanisms are superior to traditional rigid five-bar mechanisms in high precision tasks since compliant joints and links have no backlash and friction. This study explores path generation of compliant five bar mechanism resulting in high precision path tracking. The presented mechanism might be manufactured as a single piece using an injection molding technique or 3D printing by polypropylene and it is also suitable for a fully compliant Micro Electro Mechanical System fabrication. The mathematical model of the mechanism is validated by utilizing inverse-forward dynamic model. The tip point of the mechanism successfully follows the reference trajectory by employing model based PID controller. |
| File Format | |
| ISBN | 9780791858387 |
| DOI | 10.1115/IMECE2017-70077 |
| Volume Number | Volume 4B: Dynamics, Vibration, and Control |
| Conference Proceedings | ASME 2017 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2017-11-03 |
| Publisher Place | Tampa, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Dynamic response Microelectromechanical systems Degrees of freedom Elastic constants Inertia (mechanics) Deflection Computer software Control equipment Joining Additive manufacturing Equations of motion Finite element methods Equations Design Friction Trajectories (physics) Injection molding Dynamic models End effectors Runge-kutta methods Manufacturing Springs |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|