Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Binkley, Michael Ledbetter, Andrew Shahan, Stefanie Meacham, J. Mark |
| Copyright Year | 2016 |
| Abstract | A reduced order computational model and imaging experiments are presented as a combined method to investigate migration and trapping of microscale particles within an ultrasonic droplet generator. Use of two-dimensional (2D) cross-sectional representations of the three-dimensional (3D) device enables observation of acoustic focusing phenomena that are otherwise visually inaccessible. Our approach establishes relationships between system operating parameters and particle retention due to acoustic radiation forces that arise during atomization of heterogeneous particle suspensions. The droplet generator consists of a piezoelectric transducer for ultrasonic actuation, a resonant fluid-filled chamber, and an array of microscopic pyramidal nozzles. 2D visualization chips were produced through anodic bonding of glass to microfluidic reservoirs deep reactive ion etched in silicon. Open nozzle orifices of the 3D microarray were sealed in its 2D representation to facilitate filling and testing. Finite element analysis was used to model the harmonic response of the 2D assembly from 500 kHz to 2 MHz. The average nozzle tip pressure amplitude across the 2D array was then used to identify operating frequencies that correspond to optimal droplet ejection from the 3D device (ejection modes). The pressure field at these resonant frequencies predicts the equilibrium distribution of polymeric beads suspended in the reservoirs of the 2D chips. To qualitatively assess the accuracy of the model results, visualization experiments were performed at the first three ejection modes of the system (fn1 ≈ 620–680 kHz, fn2 ≈ 1.14 MHz, and fn3 ≈ 1.63 MHz) using 10 μm polystyrene beads. The model demonstrates a remarkable ability to capture the overall shape, as well as specific details of the terminal particle distributions, defined as the state with no further movement toward a pressure node or antinode. Finally, time course trials of acoustic focusing of heterogeneous particle suspensions were used to observe the influence of particle volume on the magnitude of the acoustic radiation force. A mixture of 5 μm and 20 μm diameter polystyrene beads was subjected to a standing acoustic field in the 2D chips. Particle position was recorded at 5 ms intervals until an equilibrium distribution was achieved. As expected, the larger beads focused much more rapidly than smaller beads, acquiring their final positions in seconds (versus 10s of seconds for the 5 μm particles). The method and results reported here serve as building blocks toward translation of an existing ultrasonic droplet generator into a high-throughput particle separation and isolation platform. |
| File Format | |
| ISBN | 9780791850534 |
| DOI | 10.1115/IMECE2016-66904 |
| Volume Number | Volume 3: Biomedical and Biotechnology Engineering |
| Conference Proceedings | ASME 2016 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2016-11-11 |
| Publisher Place | Phoenix, Arizona, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Visualization Microscale devices Glass Acoustics Separation (technology) Modeling Fluids Piezoelectric transducers Imaging Orifices Nozzles Silicon Manufacturing Shapes Bonding Testing Equilibrium (physics) Generators Pressure Blocks (building materials) Radiation (physics) Particulate matter Drops Reservoirs Resonance Finite element analysis Microfluidics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|