Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tan, X. Gary Andrzej, J. Przekwas Raj, K. Gupta |
| Copyright Year | 2016 |
| Abstract | Traumatic brain injury (TBI) occurs in many blunt, ballistic and blast impact events. During trauma axons in the white matter are especially vulnerable to injury due to the rapid mechanical loading of brain. The axonal pathology leads to cytoskeletal failure and disconnection. The microtubules are one of major structural components of the cytoskeleton filamentous network. By bridging the macroscopic forces acting on the whole brain with the cellular and subcellular failure, the macro-micro computational models in both time and space can help us better understand the complex biophysics and elucidate the injury mechanism of both severe and mild TBI (concussion). At the macroscopic scale we developed the high-fidelity anatomical human body finite element model (FEM) to predict intracranial pressures and strain and strain rate fields of brain in the blast event. The macro-scale models and the coupled blast and biomechanics approach were validated against test data of shock wave interacting with a surrogate head in the shock tube. The mechanical deformation of brain tissue was mapped to the white matter tracts to obtain local axonal strain and strain rate for the micromechanical models. We developed the micromechanical FEM of myelinated axons interconnected with the oligodendrocyte by the processes, utilizing a novel beam element free of rotational degrees of freedom (DOFs). The numerical results reveal the possible mechanism of impact-induced axon injury including demyelination, breakup of processes, and axonal varicosity. We also investigate the dynamic response of microtubules bundles under traumatic loading. Different from the commonly discrete bead-spring models, a network of microtubules cross-linked with microtubule-associated-protein (MAP) tau proteins was modeled by the nonlinear beam model. Tau protein is modeled by the rate-dependent bar element for its complicated material behavior. The model considers the rupture of microtubule and the failure of tau-tau interface and tau-microtubule interface. The simulation result of the combined effects of the failure of the cross-linked architecture and elongation and bending of the bundle are possibly correlated to the axonal undulations following traumatic loading observed in the experiments. The developed macro-micro biomechanics models can be used as a starting point for modeling the neurobiology effects and guide the design of novel injury protection strategies. |
| File Format | |
| ISBN | 9780791850534 |
| DOI | 10.1115/IMECE2016-66218 |
| Volume Number | Volume 3: Biomedical and Biotechnology Engineering |
| Conference Proceedings | ASME 2016 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2016-11-11 |
| Publisher Place | Phoenix, Arizona, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Dynamic response Brain Injury mechanisms Degrees of freedom Traumatic brain injury Deformation Biological tissues Rupture Wounds Biophysics Modeling Biomechanics Proteins Design Shock waves Structural elements (construction) Finite element model Simulation results Shock tubes Finite element analysis Springs Failure Elongation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|