Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ali, A. Tarhini Ramsey, F. Hamade |
| Copyright Year | 2011 |
| Abstract | Under cathodic conditions, rubber/steel adhesive bonded joints have been documented to ‘weaken’ due to attack by the generated alkali. If this were to occur under the action of cleavage mechanical loads, the bonds are likely to completely ‘delaminate’ causing the bonded constituents to physically separate. These two modes of disbondment are referred to as ‘weakening’ and ‘delamination’, respectively. Previously, Hamade and coworkers have implemented empirical and semi-empirical approaches to modeling cathodic disbondment of adhesive joints. Here, a method is presented to simulate bond weakening progress via numerical solutions. Bond degradation is modeled as a liquid-solid chemical reactor due to the attack by the alkaline medium. Specifically, the diffusion and chemical reaction processes involved in weakening are mathematically represented via a simplified, 2 partial differential equations (p.d.e.) boundary value problem (BVP). This is a reduced version of the more complex electrochemical formulation needed to fully describe the chemistry at the bondline under cathodic conditions. The weakening model is capable of simulating weakened bond lengths vs. time as function of electrolyte type (artificial sweater, ASW, or 1N NaOH), cathodic potential, and temperature. Furthermore and to model bond delamination, a mechano-chemical failure criterion is incorporated into the weakening formulation effectively coupling fracture mechanics principles with those of cathodic degradation. A fracture mechanics parameter, applied strain energy release rate, G, is used to represent the effect of externally applied loads. The failure criterion stipulates that the bond will delaminate if the applied G exceeds that of the degraded bond’s residual resistance. Both, the weakening and delamination formulations are validated against experimental data of bond weakening and delamination under a variety of conditions. As such, the numerical simulations developed in this work may be used to provide first order estimates of the life of rubber/steel bonded joints (weakened or delaminated lengths vs. time) as function of cathodic parameters and applied G (if the joint is loaded in the case of delamination). |
| Starting Page | 457 |
| Ending Page | 464 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791854891 |
| DOI | 10.1115/IMECE2011-63307 |
| Volume Number | Volume 3: Design and Manufacturing |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Fracture mechanics Computer simulation Partial differential equations Chemical reactions Steel Diffusion (physics) Modeling Stress Chemistry Adhesives Adhesive joints Boundary-value problems Electrolytes Rubber Delamination Failure |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|