Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Smith, Lelanie Josua, P. Meyer Oliver, F. Oxtoby Arnuad, G. Malan |
| Copyright Year | 2011 |
| Abstract | Computational Fluid Dynamics (CFD) simulation is a computational tool for exploring flow applications in science and technology. Of central importance in many flow scenarios is the accurate modeling of the boundary layer phenomenon. This is particularly true in the aerospace industry, where it is central to the prediction of drag. Modern CFD codes as applied to modeling aerodynamic flows have to be fast and efficient in order to model complex realistic geometries. When considering viscous flows the boundary layer typically requires the largest part of computational resources. To simulate boundary layer flow with most current CFD codes requires extremely fine mesh spacing normal to the wall and is consequently computationally very expensive. Boundary layer modeling approaches have by contrast received relatively little attention, while having the potential of offering considerable computational cost savings. One boundary layer method which has proven to be very accurate is the two-integral method of Drela (1986). Coupling the boundary layer solution to inviscid external flow is, however, a challenge due to the Goldstein singularity, which occurs as separation is approached. We propose to develop a new method to couple Drela’s two-integral equations with a generic outer flow solver in an iterative fashion. We introduce an auxiliary equation which is solved along with the displacement thickness to overcome the Goldstein singularity without the need to solve the entire flow domain simultaneously. In this work the incompressible Navier-Stokes equations will be used for the outer flow. In the majority of previous studies the boundary layer thickness is simulated using a wall transpiration boundary condition at the interface between viscous and inviscid flows. This boundary condition is inherently non-physical since it adds extra mass into the system to simulate the effects of the boundary layer. Here, we circumvent this drawback by the use of a mesh movement algorithm to shift the surface of the body outward without regridding the entire mesh. This replaces the transpiration boundary condition. The results obtained show that accurate modeling is possible for laminar incompressible flow and that the solutions obtained compare well to similarity solutions in the cases of flat and inclined plates and to the results of a NACA 0012 airfoil produced by the validated XFOIL code (Drela and Youngren, 2001). |
| Starting Page | 181 |
| Ending Page | 191 |
| Page Count | 11 |
| File Format | |
| ISBN | 9780791854877 |
| DOI | 10.1115/IMECE2011-62075 |
| Volume Number | Volume 1: Advances in Aerospace Technology; Energy Water Nexus; Globalization of Engineering; Posters |
| Conference Proceedings | ASME 2011 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2011-11-11 |
| Publisher Place | Denver, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Navier-stokes equations Computational fluid dynamics Aerodynamic flow Airfoils Drag (fluid dynamics) Separation (technology) Modeling Flow (dynamics) Aerospace industry Displacement Transpiration Algorithms Simulation Inviscid flow Plates (structures) Boundary-value problems Boundary layers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|