Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Anthony, J. Bowman Park, Hyunjae |
| Copyright Year | 2006 |
| Abstract | In this paper developing laminar fluid flow and heat transfer performance in toroidal and helical coiled tube heat exchanger systems with coil-to-tube radius ratios (5 to 45) and small helical pitch are investigated using appropriate numerical modeling techniques available in the CFD package (Fluent v6.2). Base CFD models were primarily developed, optimized and compared with available published friction factor and heat transfer data and correlations for the toroidal and helical coil systems. With the proven CFD modeling technique and the results obtained, the analysis was extended to the coil-to-tube radius ratios of interest and to the investigation of the effect of thermo-physical properties of working fluids on the system thermal performance. The CFD models employ variable thermo-physical properties in the analysis of uniform wall temperature heating and cooling of common working fluids such as air and water. Defining appropriate dimensionless variables to describe the developing and redeveloping hydrodynamic and thermal flow for coiled tube systems, the variations of friction factor and local Nusselt number along the coil are investigated. It has been shown that in addition to the common affecting parameters, i.e. the coil-to-tube radius ratio and the Dean and Prandtl numbers, the heat transfer performance also depends upon the interactions (expansion and suppression) between the viscous and thermal boundary layers due to secondary flows caused by the centrifugal and torsional forces inherent in coiled tube systems. Upon investigation of the variations of the local dimensionless velocity and temperature along the coil length, it was found that for both heating and cooling conditions, fully-developed hydrodynamic and thermal conditions are not established in the coiled-tube system for the geometric constraints and system boundary and operating conditions used in this work. The case studies performed in this paper indicated approximately 20-30% higher for heating of water (20-30% lower for cooling of air and water) than values of heat transfer coefficients obtained from the reported correlations. The results obtained in this work can be used to correct/adjust the flow and thermal performance used in the design of toroidal and helical coiled tube systems. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 719 |
| Ending Page | 731 |
| Page Count | 13 |
| File Format | |
| ISBN | 0791847845 |
| DOI | 10.1115/IMECE2006-15570 |
| e-ISBN | 0791837904 |
| Volume Number | Heat Transfer, Volume 1 |
| Conference Proceedings | ASME 2006 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2006-11-05 |
| Publisher Place | Chicago, Illinois, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Thermal boundary layers Temperature Cooling Computational fluid dynamics Computer simulation Fluid dynamics Heat exchangers Flow (dynamics) Modeling Wall temperature Design Fluids Laminar flow Friction Heating Heating and cooling Heat transfer coefficients Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|