Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Raghavan, Vasudevan Daniel, N. Pope Gogos, George |
| Copyright Year | 2006 |
| Abstract | A numerical investigation of methanol droplet combustion in a zero-gravity and low-pressure convective environment is presented. Simulations have been carried out using a predictive, transient and axisymmetric model, which includes droplet heating, liquid-phase circulation and water absorption. First, a suspended droplet (constant relative velocity) burning in an ambient of air at 300K is considered. A nearly quiescent environment (initial Reynolds number Re0=0.01) is used to impose a weak gas-phase convective flow, introducing a deviation from spherical symmetry. The resulting weak liquid-phase circulation is greatly enhanced due to surface tension effects, which create a complex, time-varying, multicellular flow pattern within the liquid droplet. The complex flow pattern, which, in the presence of surface tension, results in nearly perfect mixing, causes increased water absorption within the droplet, leading to larger extinction diameters. Surface tension effects are shown to be dominant in causing water absorption, even at initial Reynolds numbers as high as 5. Results for combustion in a nearly quiescent environment (Re0=0.01) with varying initial droplet diameters, (d0 = 0.16 to 1.72 mm), show that predictions of droplet extinction diameters, although they are still below the experimental data, do improve substantially when surface tension effects are included. Next, results for suspended droplets and for moving droplets burning in an ambient of air at 1200K, for a range of initial Reynolds numbers that are of interest in spray combustion (Re0=1-100) are presented. It is shown that, for moving droplets, due to the presence of an envelope flame at some stage during the droplet lifetime, surface tension is important over the entire range of Re0 considered; the extinction diameter decreases with increasing Re0. Extinction is not observed for a moving droplet when surface tension effects are neglected. For suspended droplets, when transition or envelope flame is present, which corresponds to Re0 less than approximately 15, surface tension is important; when an envelope flame is present (Re0 less than approximately 10), the extinction diameter increases with Re0. The variation of droplet lifetime with Re0 is much stronger for suspended droplets than for moving droplets. Depending on the Reynolds number, results on methanol droplet lifetimes and extinction diameters measured through suspended droplet experiments may not be applicable to moving droplets. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 9 |
| Ending Page | 19 |
| Page Count | 11 |
| File Format | |
| ISBN | 0791847853 |
| DOI | 10.1115/IMECE2006-13801 |
| e-ISBN | 0791837904 |
| Volume Number | Heat Transfer, Volume 2 |
| Conference Proceedings | ASME 2006 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2006-11-05 |
| Publisher Place | Chicago, Illinois, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Gravity (force) Reynolds number Sprays Combustion Flow (dynamics) Pressure Transients (dynamics) Flames Simulation Heating Drops Surface tension Water absorption Engineering simulation Methanol |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|