Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Gorodetsky, Amir Herman, D. Haustein |
| Copyright Year | 2016 |
| Abstract | Heat dissipation in modern high-power electronics require high performance cooling, which traditional air-based systems cannot provide. Rather, novel systems using liquids, which have inherently better heat transfer characteristics, must be used. Therefore, these have recently been extensively examined. The present study aims to identify the liquid flow patterns which significantly increase heat transfer, examine them through simulation (transient 2D laminar DNS) and experimentally realize the most promising configuration. Any such flow patterns should target a major inhibitor of heat transfer, namely, the development of the thermal boundary layer. From the literature, it was seen that traveling vortices should meet this demand, due to generation of perpendicular unsteady or periodic flows, and consequently significant disruption of the boundary layer. Traditionally, micro-channels have been widely employed for micro-electronics cooling. However, the generation and persistence of the desired vortices over longer distances, as well as a desired lower pressure drop can be obtained in micro-gaps, which have inherently overall lower wall-fluid friction. The desired vortices can be further enhanced by active methods such as inlet flow pulsation. In the present study, based on numerical simulations (grid-independent and validated against an analytical solution) a suitable micro-gap geometrical configuration was chosen, while the flow rate (Re) and excitation frequency (Strouhal number around the well-known resonance, St = 0.3) with low amplitude, were examined over a wide range. Further examination led to the choice of two methods for vortex generation. The first is a use of bluff bodies as flow obstructers in the micro-gap, whereby vortex shedding (von Karman street) occurs already at low Reynolds numbers (Re>50). A preliminary experimental device was constructed with side and top view capabilities, for flow visualization, as well as the possibility of wall temperature measurement by IR thermography. Preliminary simulations and experiments showed that Vortex shedding onset was only mildly affected in the micro-scale (200 micron obstruction in 600 micron channel), while heat transfer was seen to increase three-fold over obstruction-free gap, with only mild pressure drop increase. The second method has additional advantage of imposed perpendicular flow. The model consists of a row of slot-jets in a micro-gap with cross-flow. Recent experimental and numerical studies employing a similar hybrid cooling scheme, showed significant heat flux dissipation (305 W/cm2). Here too, significant increase of the heat transfer was found, with additional increase associated with flow pulsation. In future experimental work, the intention is to include MEMS based actuators for individual control of the jets’ excitation ability and effective slot width. |
| Sponsorship | Fluids Engineering Division |
| File Format | |
| ISBN | 9780791850343 |
| DOI | 10.1115/ICNMM2016-8047 |
| Volume Number | ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels |
| Conference Proceedings | ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting |
| Language | English |
| Publisher Date | 2016-07-10 |
| Publisher Place | Washington, DC, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Thermal boundary layers Actuators Roads Microscale devices Electronics Microelectronic devices Heat flux Microchannels Wall temperature Fluids Cross-flow Energy dissipation Excitation Thermography Microelectromechanical systems Vortex shedding Cooling Computer simulation Reynolds number Flow (dynamics) Transients (dynamics) Heat Simulation Friction Pressure drop Vortices Flow visualization Jets Resonance Heat transfer Boundary layers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|