Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Oh, Jaekyoon Yoo, Yungpil Seung, Samsun Kwak, Ho-Young |
| Copyright Year | 2016 |
| Abstract | It is well known that a high-power laser could breakdown liquid [1, 2]. Laser-induced breakdown of liquids is characterized by fast plasma formation after evaporation of liquid and subsequent vapor expansion accompanied by shock wave emission [2]. The bubble wall velocity after the shock departure has been found to be sufficiently high to produce emission of light at the collapse point [3]. Recently, bubble formation on the surface of gold nanoparticles irradiated by a high-power laser in water [4, 5] has been studied for medical applications such as cancer diagnosis and possible therapy [5]. However, it is very hard to perform these experiments and to obtain good data from the bubble formation on the surface of laser-irradiated nano-particles because the nanoparticles dispersed in liquid cannot be controlled properly. In this study, laser-induced bubble formation on a micro gold particle levitated at the center of a spherical flask under ultrasound was investigated experimentally. The obtained results are compared with the results for laser cavitation without the gold particle, i.e., typical laser-induced cavitation. Figure 1 shows a schematic of the experimental setup used to investigate the laser-induced bubble formation on a micro gold particle. Two disk-type lead zirconate titanate (PZT) transducers (Channel Industries Inc.; 15 mm in diameter and 5.0 mm in thickness) attached to the side of the wall of the cell produced a velocity stagnation point near the center of the flask. The driving frequency of the PZT transducers was approximately 27.0 kHz which was close to the resonance frequency of the LRC circuit (Its capacitor unis is PZT.) and the acoustic resonance frequency of the water-filled flask. A drop of water containing gold particles with an average diameter of 10 μm are dispersed was injected into a 100-ml pyrex spherical flask filled with degassed water. When the body force of a gold particle in liquid is slightly lower than the Bjerknes force [6] induced by ultrasound, the particle will stay near the pressure antinode, i.e., the center of the flask. A Q-switched Nd:Yag laser delivered a single pulse of 0.5 ns in width with an energy of 7.5 mJ at a wavelength of 1064 nm to the gold particle or liquid at the center of the cell. The laser light was focused at the center of the flask using a lens with an effective focal length of 36.3 mm. Bubble formation and subsequent growth and collapse were visuallized by a high-speed camera (V2511, Phantom, USA) with 0.45 Mfps (million frames per second). The time-dependent radius was also obtained by the light scattering method. The scattering angle chosen was 80 degree where one-to-one relationship exists between the scattered intensity and the bubble radius [7]. The scattered intensity from a bubble illuminated by a 5-mW He-Ne laser was received by a photomultiplier tube (PMT: Hamamatsu, R2027) and was recorded in an oscilloscope. The scattering data were calibrated using the maximum radius for different bubble, which was obtained by high-speed camera. The shock strength during the expansion stage of bubbles was measured by a calibrated needle hydrophone (HPM1, Precision Acoustics, UK) at various distances from the center of the cell for different bubbles. The hydrophone can measure acoustic signals ranging from 1 kPa to 20 MPa. The hydrophone was attached to a three-dimensional micro stage so that fine control of the positioning of the hydrophone was possible. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791850329 |
| DOI | 10.1115/HT2016-1006 |
| Volume Number | Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems |
| Conference Proceedings | ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2016-07-10 |
| Publisher Place | Washington, DC, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Radiation scattering Q-switching Scattering (physics) Capacitors Circuits Oscilloscopes Vapors Acoustics Plasmas (ionized gases) Nanoparticles Bubbles Light emission Lasers Phantoms Needles Borosilicate glasses Signals Ultrasound Collapse Nd-yag lasers Transducers High power lasers Light scattering Evaporation Cavitation Pressure Wavelength Emissions Patient treatment Shock waves Biomedicine Electromagnetic scattering Particulate matter Lenses (optics) Helium-neon lasers Disks Resonance Shock (mechanics) Cancer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|