Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ayaskanta, Arya Huang, Longzhong Simon, Terrence Yeom, Taiho North, Mark Cui, Tianhong |
| Copyright Year | 2013 |
| Abstract | Rising thermal dissipation from modern electronics has increased the challenge of cooling using conventional heat sinks. In addition to fans and blowers, focus is turning to active cooling devices for augmenting performance. A piezoelectrically-actuated synthetic jet array is one under consideration. Synthetic jets are zero-net–mass-flow jets realized by a cavity with an oscillating diaphragm on one side and an orifice or multiple orifices on the other side. They generate highly unsteady jetting flows that can impinge upon heated surfaces and enhance cooling. However, the synthetic jet actuation components might interfere with other components of the electronics module, such as the fan, requiring a displacement of the cavity center from the jet array center. Herein, heat transfer enhancement by an inclined piezoelectrically-actuated synthetic jet arrangement in a heat sink for electronics cooling has been experimentally and numerically studied. A wedge-shaped platform is designed to introduce the jets with an inclined configuration into the finned channels of the heat sink. The unit is inclined to avoid interference with other components of the module. The penalty is described in terms of velocities of jets emerging from this wedge-shaped platform, compared to those from an aligned cavity-orifice design. Effects on heat transfer performance for the heat sink are documented. The jets are arranged as wall jets passing over heat sink fins. The experimental study is complemented with a numerical analysis of flow within the synthetic jet cavity. Optimization is done on the number of jets against the penalty on jet velocity for obtaining maximum cooling performance. The jets are driven by piezoelectric actuators operating at resonance frequencies of 700–800 Hz resulting in peak jet velocities of approximately 35m/s from 92, 0.9 mm × 0.9 mm orifices. The results give guidance to those who face a similar interference problem and are considering displacement of the synthetic jet assembly. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791855492 |
| DOI | 10.1115/HT2013-17769 |
| Volume Number | Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles |
| Conference Proceedings | ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2013-07-14 |
| Publisher Place | Minneapolis, Minnesota, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Synthetic jets Heat transfer enhancement Electronics cooling Heat sink Computer cooling Jets Heat sinks Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|