Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tom, I.-Ping Shih Sathyanarayanan, Srisudarshan Krishna |
| Copyright Year | 2013 |
| Abstract | Convective heat transfer over surfaces is generally presented in the form of the heat-transfer coefficient (h) or its nondimensional form, the Nusselt number (Nu). Both require the specification of the free-stream temperature (Too) or the bulk (Tb) temperature, which are clearly defined only for simple configurations. For complicated configurations with flow separation and multiple temperature streams, the physical significance of Too and Tb becomes unclear. In addition, their use could cause the local h to approach positive or negative infinity if Too or Tb is nearly the same as the local wall temperature (Twall). In this paper, a new Nusselt number, referred to as the SCS number, is proposed, that provides information on the local heat flux but does not use h and hence by-passes the need to define Too or Tb. CFD analysis based on steady RANS with the shear-stress transport model is used to compare and contrast the SCS number with Nu for two test problems: (1) compressible flow and heat transfer in a straight duct with a circular cross section and (2) compressible flow and heat transfer in a high-aspect ratio rectangular duct with a staggered array of pin fins. Parameters examined include: Reynolds number at the duct inlet (3,000 to 15,000 for the circular duct and 15,000 and 150,000 for the rectangular duct), wall temperature (Twall = 373 K to 1473 K for the circular duct and 313 K and 1,173 K for the rectangular duct), and distance from of the inlet of the duct (up to 100D for the circular duct and up to 156D for the rectangular duct). For the circular duct, Nu was found to decrease rapidly from the duct inlet until reaching a minimum and then to rise until reaching a nearly constant value in the “fully” developed region if the wall is heating the gas. If the wall is cooling the gas, then Nu has a constant positive slope in the “fully” developed region. The location of the minimum in Nu and where Nu becomes nearly constant in value or in slope are strong functions of Twall. For the SCS number, the decrease from the duct inlet is monotonic with a negative slope, whether the wall is heating or cooling the gas. Also, different SCS curves for different Twall approach each other as the distance from the inlet increases. For the rectangular duct, Nu tends to oscillate about a constant value in the pin-fin region, whereas SCS tends to oscillate about a line with a negative slope. For both test problems, the variation of SCS is not more complicated than Nu, but SCS yields the local heat flux without need for Tb, a parameter that is hard to define and measure for complicated problems. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791855492 |
| DOI | 10.1115/HT2013-17114 |
| Volume Number | Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles |
| Conference Proceedings | ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2013-07-14 |
| Publisher Place | Minneapolis, Minnesota, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Turbine cooling Heat transfer in the entrance region of ducts Heat-transfer coefficient Heat-transfer correlations Entrance region Temperature Cooling Computational fluid dynamics Ducts Flow separation Reynolds number Fins Convection Heat flux Wall temperature Heating Reynolds-averaged navier–stokes equations Shear stress Compressible flow Heat transfer Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|