Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Caleb, S. Cunningham Ransom, David Wilkes, Jason Bishop, John White, Benjamin |
| Copyright Year | 2015 |
| Abstract | As part of the Intelligence Advanced Research Projects Activity (iARPA) Great Horned Owl (GHO) program, Southwest Research Institute® (SwRI®) developed and tested a small gas turbine for power generation in Unmanned Aerial Vehicles (UAV). This development program focused on advancing the state of the art in UAV power systems by meeting key metrics in weight, fuel efficiency, and noise generation. Design, assembly, and testing of the gas turbine were completed in-house at SwRI. Fundamental mechanical design features of the gas turbine include an integrated 7 kW motor-generator, minimal oil lubrication system, cantilevered compressor/turbine assembly, and can combustor with air-atomizing fuel nozzles. The compressor/turbine assembly is cantilevered directly off of the motor-generator shaft, which spins on hybrid ceramic bearings. Due to potential rotor natural frequencies in the design operating range, the rotor-dynamic design of this configuration was a special design challenge. The outboard rotor bearing is softly supported on O-rings to provide compliance and drive shaft natural frequencies below the operating range. The lube oil system is another interesting design feature of the GHO gas turbine. It is based on a minimal oil lubrication system previously used at SwRI. The minimal oil lubrication system relies on low oil flow rates and cooling air to pull droplets of oil through the bearing. The oil passes through the machine and is consumed during combustion. This system eliminates traditional oil recirculation hardware for simplicity and weight savings. The can combustor features a modular design and uses additive manufacturing techniques to facilitate easy and cost effective prototyping. All combustor components are manufactured from Inconel 718 using direct metal laser sintering (DMLS) with additional post-machining. These parts are particularly challenging for DMLS because of their thin walls and high aspect ratio. The custom air-atomizing fuel nozzles also highlight one of the exciting advantages of the DMLS process. Each nozzle would be difficult to machine using traditional techniques because of the tight internal flow passages; however, they are simple to construct using additive manufacturing. The GHO turbine developed by SwRI demonstrates interesting design features including a minimal oil lubrication system, a cantilever shaft with softly supported bearing, and combustor components built using additive manufacturing techniques. This design provides a platform for further development, testing, and demonstration of small gas turbine technology for UAV power generation. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791856796 |
| DOI | 10.1115/GT2015-43491 |
| Volume Number | Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines |
| Conference Proceedings | ASME Turbo Expo 2015: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2015-06-15 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Bearings Metals Machining Motors Industrial lubrication systems Combustion Additive manufacturing Fuels Machinery Engines Thin wall structures Design Cantilevers Noise (sound) Design engineering Gas turbines Fuel efficiency Internal flow Lasers Power systems (machinery) Weight (mass) Energy generation Nozzles Unmanned aerial vehicles Hardware Manufacturing Turbines Testing Cooling Rotors Compressors Generators Ceramics Flow (dynamics) Sintering Drops Seals Combustion chambers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|