Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Chandler, Kane Melas, Mauro Jorge, Teresa |
| Copyright Year | 2015 |
| Abstract | Recent advances in computational fluid dynamics (CFD) offer the possibility to predict condensing flows in 3D LP steam turbine geometries. Correct analysis of wetness losses, droplet deposition and other two-phase effects in LP steam turbines requires accurate prediction of the non-equilibrium flow field and droplet sizes. The paper compares numerical results from a 3D, polydispersed, condensing flow CFD code to experimental data measured in a scaled model LP turbine for a range of operating conditions. In order to compare the computed efficiencies with the measured values, a method for averaging non-equilibrium flow fields has been developed. Comparisons are made between computational and experimental results for a series of inlet temperature variation tests where the inlet and exit pressures were kept constant. The steady calculations accurately predict the temperature that the primary nucleation zone moves to an upstream row. Furthermore, the mechanism of condensation as nucleation changes rows is explored and it is shown that initially a significant degree of subcooling is maintained in the inter-blade section and, as a result, nucleation occurs at a relatively low rate in a zone that extends far downstream of the blade’s trailing edge. This produces relatively large droplets compared to when nucleation occurs predominantly within the blade passage and is clearly visible in the measured module efficiencies and local flow angles, static pressures and light extinction. The measured variation of efficiency and specific work with inlet temperature is predicted accurately by the computations. It is concluded that steady condensing flow wet-steam calculations are able to predict the location of nucleation and the variation of flow dynamics and performance with inlet temperature accurately. A description of the condensation process as nucleation moves between rows has been given and is consistent with the numerical and experimental results. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791856796 |
| DOI | 10.1115/GT2015-42458 |
| Volume Number | Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines |
| Conference Proceedings | ASME Turbo Expo 2015: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2015-06-15 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Nonequilibrium flow Temperature Computational fluid dynamics Blades Steam turbines Condensation Flow (dynamics) Nucleation (physics) Subcooling Computation Drops Steam Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|