Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Andrés, Luis San Jeung, Sung-Hwa Bradley, Gary |
| Copyright Year | 2014 |
| Abstract | Aircraft engines customarily implement Squeeze Film Dampers (SFDs) to dissipate mechanical energy caused by rotor vibration and to isolate the rotor from its structural frame. The paper presents experimental results for the dynamic forced performance of an open ends SFD operating with large amplitude whirl motions, centered and off-centered. The test rig comprises of an elastically supported bearing with a damper section, 127 mm in diameter, having two parallel film lands separated by a central groove. Each film land is 25.4 mm long with radial clearance c = 0.251 mm. The central groove, 12.7 mm long, has a depth of 9.5 mm (38c). An ISO VG 2 lubricant flows into the groove via three 2.5 mm orifices, 120 degrees apart, and then passes through the film lands to exit at ambient condition. Two orthogonally placed shakers apply dynamic loads on the bearing to induce circular orbit motions with whirl frequency ranging from 10 Hz to 100 Hz. A static loader, 45° away from each shaker, pulls the bearing to a static eccentricity (es). Measurements of dynamic loads and the ensuing bearing displacements and accelerations, as well as the film and groove dynamic pressures, were obtained for eight orbit amplitudes (r = 0.08c to ∼0.71c) and under four static eccentricities (es = 0.0c to ∼0.76c). The experimental damping coefficients increase quickly as the bearing offset increases (es/c→0.76) while remaining impervious to the amplitude of whirl orbit (r/c→0.51). The inertia coefficients decrease rapidly as the orbit amplitude grows large, r>0.51c, but increase with the static eccentricity. A comparison with test results obtained with an identical damper but having a smaller clearance (cs = 0.141 mm) [1], show the prior damping and inertia coefficients are larger, ∼5.0 and ∼2.2 times larger than the current ones. These magnitudes agree modestly with theoretical ratios for damping and inertia coefficients scaling as (c/cs)3 = 5.7 and (c/cs) = 1.8, respectively. In spite of the large difference in depths between a groove and a film land, the magnitudes of dynamic pressures recorded at the groove are similar to those in the lands. That is, the groove profoundly affects the dynamic forced response of the test damper. A computational physics model replicates the experimental whirl motions and predicts force coefficients spanning the same range of whirl frequencies, orbit radii and static eccentricities. The model predictions reproduce with great fidelity the experimental force coefficients. The good agreement relies on the specification of an effective groove depth derived from one experiment. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791845776 |
| DOI | 10.1115/GT2014-25413 |
| Volume Number | Volume 7B: Structures and Dynamics |
| Conference Proceedings | ASME Turbo Expo 2014: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2014-06-16 |
| Publisher Place | Düsseldorf, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Damping Whirls Inertia (mechanics) Dampers Lubricants Bearings Rotors Clearances (engineering) Aircraft engines Flow (dynamics) Stress Rotor vibration Structural frames Orifices Computational physics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|