Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Funke, H. H. -W Boerner, S. Keinz, J. Kusterer, K. Ayed, A. Haj Tekin, N. Kazari, M. Kitajima, J. Horikawa, A. Okada, K. |
| Copyright Year | 2013 |
| Abstract | In the future low pollution power generation can be achieved by application of hydrogen as a possible alternative gas turbine fuel if the hydrogen is produced by renewable energy sources such as wind energy or biomass. The utilization of existing IGCC power plant technology with the combination of low cost coal as a bridge to renewable energy sources such as biomass can support the international effort to reduce the environmental impact of electricity generation. Against this background the dry low NOx Micromix combustion principle for hydrogen is developed for years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen and burns in multiple miniaturized diffusion-type flames. The two advantages of this principle are the inherent safety against flash-back and the low NOx concentrations due to a very short residence time of reactants in the flame region of the micro-flames. The paper presents experimental results showing the significant reduction of NOx emissions at high equivalence ratios and at simultaneously increased energy density under preheated atmospheric conditions. Furthermore the paper presents the feasibility of enlarged Micromix hydrogen injectors reducing the number of required injectors of a full-scale Micromix combustion chamber while maintaining the thermal energy output with significantly low NOx formation. The experimental investigations are accompanied by 3D numerical reacting flow simulations based on a simplified hydrogen combustion model. Comparison with experimental results shows good agreement with respect to flame structure, shape and anchoring position. Thus, the experimental and numerical results highlight further potential of the Micromix combustion principle for low NOx combustion of hydrogen in industrial gas turbine applications. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855102 |
| DOI | 10.1115/GT2013-94771 |
| Volume Number | Volume 1A: Combustion, Fuels and Emissions |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Industrial gases Bridges (structures) Hydrogen Combustion Biomass Fuels Density Electric power generation Flames Flow simulation Integrated gasification combined cycle power stations Pollution Gas turbines Cross-flow Wind energy Ejectors Coal Energy generation Power stations Safety Shapes Turbines Diffusion (physics) Thermal energy Emissions Renewable energy sources Nitrogen oxides Combustion chambers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|