Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Baumgartner, Georg Sattelmayer, Thomas |
| Copyright Year | 2013 |
| Abstract | In modern industrial gas turbines swirling flow is widely used for stabilizing flames at the transition from the burner to the combustor. In premixed combustion systems using highly reactive fuels, flashback due to combustion induced vortex breakdown (CIVB) has been observed frequently when swirl was present. This paper focuses on the effect of low swirl intensities on the flashback propensity and the predominant flashback mechanisms in a hydrogen-air tube burner. An existing test rig with a vertical quartz tube and a generic swirl generator has been used. At the tube exit the flame was stabilized in the free atmosphere. The turbulent flashback limits were measured for hydrogen-air mixtures at atmospheric conditions over a broad range of equivalence ratios for both non-swirling and swirling flow. The upstream flame propagation during flashback was observed through the OH*-chemiluminescence captured by two synchronized intensified high-speed cameras in a 90° arrangement, both looking at the flame from the side. In addition to that, a high-speed particle image velocimetry (PIV) system was used to insert a horizontal laser sheet into the vertical tube in order to investigate the propagation path of the leading flame tip through a time series of Mie-scattering images from the bottom. As expected, it turned out that the flame always flashes back along the wall boundary layer for non-swirling flow. For swirling flow it could be shown that again only boundary layer flashback takes place for equivalence ratios lower than ϕ≈0.75. In this rather lean region, the resistance against flashback is improved compared to non-swirling flow due to higher wall velocity gradients. For higher equivalence ratios, flashback is initiated through CIVB. That is, the flame enters the tube on the burner centerline until its tail gets in touch with the burner walls. Subsequently, there is a shift in flashback mechanism and the flame propagates further upstream along the wall boundary layer. For the given setup and these near-stoichiometric mixture compositions, this resulted in a significantly increased flashback propensity when compared with non-swirling flames. The present studies showed that imposing low swirl upon the burner flow can improve the resistance against boundary layer flashback for low and moderate equivalence ratios, whereas the change to the CIVB mechanism deteriorates the performance for high equivalence ratios. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855102 |
| DOI | 10.1115/GT2013-94258 |
| Volume Number | Volume 1A: Combustion, Fuels and Emissions |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Industrial gases Radiation scattering Turbulence Scattering (physics) Hydrogen Swirling flow Time series Chemiluminescence Combustion Generators Fuels Quartz Flow (dynamics) Flames Electromagnetic scattering Lasers Particulate matter Vortices Combustion systems Combustion chambers Boundary layers Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|