Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Gregory, A. Buck Obara, Hiroyuki |
| Copyright Year | 2006 |
| Abstract | Hydrogen fuel cell technology is currently capable of providing adequate power for a wide range of stationary and mobile applications. Nonetheless, the sustainability of this technology rests upon the production of hydrogen from renewable resources. Among the techniques under current study, the chemical reforming of alcohols and other bio-hydrocarbon fuels, appears to offer great promise. In the so called autothermal reforming process, a suitable combination of total and partial oxidation supports hydrogen production from ethanol with no external addition of energy required. Furthermore, the autothermal reforming process conducted in a well insulated reactor, produces temperatures that promote additional hydrogen production through the endothermic steam reforming and the water-gas shift reactions, which may be catalyzed or uncatalyzed, with the added benefit of lowered carbon monoxide concentrations. In this study, an adiabatic ethanol reforming reactor was simulated assuming the reactants to be air (21% O2 and 79% N2) and ethanol (C2H5OH) and the products to be H2O, CO2, CO and H2, with all constituents taken to be in the gaseous state. The air was introduced uniformly through a ring around the side of the reactor and the gaseous ethanol was injected into the center of one end, with products withdrawn from the center of the opposite end, to create an axisymmetric flow field. The gas flows within the reactor were assumed to be turbulent, and the chemical kinetics of a simple four reaction system was assumed to be controlled by turbulent mixing processes. Air and fuel flow rates into the reactor were varied to obtain six different levels of oxidation (air-fuel ratios) while maintaining the same total gaseous mass flow out of the reactor. The numerical results for the reacting flow show that hydrogen production is maximized when the air-fuel ratio on a mass basis is held at approximately 2.8. These findings are in qualitative agreement with observations from previous experimental studies. |
| Sponsorship | Nanotechnology Institute |
| Starting Page | 965 |
| Ending Page | 971 |
| Page Count | 7 |
| File Format | |
| ISBN | 0791842479 |
| DOI | 10.1115/FUELCELL2006-97276 |
| e-ISBN | 0791837807 |
| Volume Number | ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B |
| Conference Proceedings | ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2006-06-19 |
| Publisher Place | Irvine, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Turbulence Temperature Computer simulation Ethanol Hydrogen Carbon dioxide Fuels Flow (dynamics) Carbon Gas flow Fuel cells Sustainability Chemical kinetics Oxidation Steam reforming Hydrogen production |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|