Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Mackie, R. Sui, P. C. Djilali, N. |
| Copyright Year | 2006 |
| Abstract | Near-uniform flow distribution in a fuel cell stack is essential to stack performance and overall system efficiency. The gradients induced by the non-uniformity of the flow within each of the unit cells also have a significant impact on stack durability. In typical configurations, the oxidant and fuel are fed into a stack through manifolds and then enter each unit cell through secondary inlet port. After flowing through the unit cells, the spent gases as well as possible liquid water then enter the outlet header to leave the stack. The objective of this paper is to develop a practical model to predict cell-to-cell flow distribution in a proton exchange membrane fuel cell (PEMFC) stack. The flow distribution is first simulated using a computational fluid dynamics (CFD) tool, CFD-ACE+, in a 3D computational domain for single-phase gas flows. The simulations use a domain encompassing the flow from the inlet header through an array of unit cells to the outlet header. The CFD simulations show that in the outlet header, the flow injected from the unit cells to the header changes the flow pattern considerably, which results in a reduced cross section area for the flow in the axial direction. A circulation zone is seen near the low velocity end of the header, which may potentially become a region where liquid water accumulates. Increasing static pressure along the flow direction is observed in the inlet header. The simulated results are validated and found to be in good agreement with experimentally measured pressures in a fuel cell stack. Based on the observations in the CFD simulations, a flow network model is developed to provide quick estimates of the flow distribution as a function of stack dimensions including header and unit cell geometry. In essence, the flow network model solves for the pressure at each junction of the unit cell and the header. Three fitting parameters are introduced to account for effects of surface roughness of the headers, reduced effective header area in the outlet header, and pressure drop in the unit cell. The flow network model is shown to capture the characteristics of pressure variation and flow distribution obtained in the CFD simulations. The flow network model can effectively match experimental data and be used as a fast tool for initial design of a PEMFC stack. |
| Sponsorship | Nanotechnology Institute |
| Starting Page | 401 |
| Ending Page | 409 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791842479 |
| DOI | 10.1115/FUELCELL2006-97235 |
| e-ISBN | 0791837807 |
| Volume Number | ASME 2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology, Parts A and B |
| Conference Proceedings | ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2006-06-19 |
| Publisher Place | Irvine, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Computational fluid dynamics Network models Dimensions Durability Surface roughness Fuels Flow (dynamics) Pressure Design Geometry Manifolds Gases System efficiency Fittings Simulation Gas flow Pressure drop Network analysis Fuel cells Engineering simulation Proton exchange membrane fuel cells Junctions |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|