Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Kharoua, N. Khezzar, L. Nemouchi, Z. |
| Copyright Year | 2018 |
| Abstract | In the present work, time-dependent responses of Nusselt number, friction coefficient and pressure profiles to the passage of groups of coherent structures along a curved impingement wall, is considered. It is meant to replicate a more realistic picture of the flow. The jet considered belongs to heating applications where the jet flow temperature is higher than that of the impingement wall. The flow was simulated using Large Eddy Simulation with the Dynamic Smagorinsky sub-grid-scale model. The plane jet was forced at frequencies increasing gradually to a maximum of 2200 Hz with an amplitude equal to 30% of the mean jet velocity. The computational domain was divided into 16.5 million hexahedral computational cells whose resolution was assessed based on the turbulence scales. It was found that for low forcing frequencies (e.g., 200Hz), coherent forced primary vortices induced by the pulsations are separated by less organized vortices naturally induced similar to those of the unforced jet. It could be seen that the natural vortices have moderate effects on the boundary layer development on the impingement surface starting at relatively short distances from the stagnation point compared to the forced vortices. Increasing the forcing frequency to 1000Hz reduces the distance separating successive forced vortices causing the pairing phenomenon to occur at a certain distance along the target wall. Increasing the forcing frequency further to 2200Hz makes the pairing phenomenon followed by vortex breakdown to occur at shorter distances along the target wall. The smaller forcing frequencies yield large and strong distant vortices which affect the dynamical field noticeably in conjunction with an important deterioration of heat transfer due to their strong mixing effect and entrainment of cold air from the surroundings. On the other hand, high frequencies generate smaller vortices which are relatively close to each other. Thus, they have a weaker effect allowing the growth of the boundary layer on the target wall up to a distance equal to four times the jet-exit width where the minimum heat transfer is observed. In fact, the small successive vortices form a sort of shield preventing the cold air from the surroundings to reach the target wall until their breakdown. |
| Sponsorship | Fluids Engineering Division |
| File Format | |
| ISBN | 9780791851555 |
| DOI | 10.1115/FEDSM2018-83334 |
| Volume Number | Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fluid Dynamics of Wind Energy; Bubble, Droplet, and Aerosol Dynamics |
| Conference Proceedings | ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting |
| Language | English |
| Publisher Date | 2018-07-15 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Curved walls Temperature Turbulence Flow (dynamics) Pressure Large eddy simulation Friction Heating Vortices Jets Resolution (optics) Boundary layers Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|