Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Hakamian, Khashayar Kevin, R. Anderson Shafahi, Maryam Lakeh, Reza Baghaei |
| Copyright Year | 2018 |
| Abstract | Power overgeneration by renewable sources combined with less dispatchabe conventional power plants introduce the power grid to a new challenge, i.e., instability. The stability of the power grid requires constant balance between generation and demand. A well-known solution to power overgeneration is grid-scale energy storage. Although different energy storage technologies have been tested and demonstrated, reducing the cost of energy storage remains as a challenging goal for researchers, industries, and governments. Compressed Air Energy Storage (CAES) has been utilized for grid-scale energy storage for a few decades. However, conventional diabatic CAES systems are difficult and expensive to construct and maintain due to their high pressure operating condition. Hybrid Compressed Air Energy Storage (HCAES) systems are introduced as a new variant of old CAES technology to reduce the cost of energy storage using compressed air. The HCAES system split the received power from the grid into two subsystems. A portion of the power is used to compress air, as done in conventional CAES systems. The rest of the electric power is converted to heat in a high-temperature Thermal Energy Storage (TES) component using Joule heating. In this study, a solid-state grid-tied TES system is designed to operate with a HCAES system. The storage medium is considered to be high-temperature refractory concrete. The thermal energy is generated inside the concrete block using resistive heaters (wires) that are buried inside a concrete block. A computational approach was adopted to investigate the performance of the proposed TES system during a full charge/storage/discharge cycle. It was shown that the proposed design can be used to receive 200 kW of power from the grid for 6 hours without overheating the resistive heaters. The discharge computations show that the proposed geometry of the TES, along with a control strategy for the flow rate can provide a 74-kW micro-turbine of the HCAES with the minimum required temperature, i.e., 1144K at 0.6 kg/s of air flow rate for 6 hours. The computations were performed in ANSYS/FLUENT and the results were verified and validated using a grid independence study. |
| Sponsorship | Advanced Energy Systems Division Solar Energy Division |
| File Format | |
| ISBN | 9780791851418 |
| DOI | 10.1115/ES2018-7485 |
| Volume Number | ASME 2018 12th International Conference on Energy Sustainability |
| Conference Proceedings | ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum |
| Language | English |
| Publisher Date | 2018-06-24 |
| Publisher Place | Lake Buena Vista, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Temperature Concrete blocks Thermal energy storage Power grids High temperature Wire Electricity (physics) Design Governments High pressure (physics) Power stations Turbines Stability Flow (dynamics) Thermal energy Concretes Geometry Air flow Heat Storage Joules Compressed air Computation Heating Energy storage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|