Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Garbrecht, Oliver Zapata, José Kneer, Reinhold |
| Copyright Year | 2015 |
| Abstract | The shape of an installed solar concentrator (e.g. a heliostat) may differ from its original design due to manufacturing defects, structural/wind loads and thermal expansion. By measuring the shape of a solar concentrator, it is possible to account for the deviation in optical performance from its original design point. A method to measure concentrator shape needs to be fast, accurate, and not involve contact or interference with the reflective surface of the concentrator. State-of-the-art techniques include flux mapping, photogrammetry, and deflectometry using conventional cameras. This paper presents a study to characterise solar concentrator shapes using light-field imaging. Conventional cameras capture the light intensity of a point in a scene at a single point in the sensor, creating a two-dimensional image. A light field camera features multiple micro-lenses placed between the main lens and the sensor, providing many small images from slightly different angles in a single shot. This information is used to reconstruct the position of a light source in space. The advantage of this new technique to the ones mentioned above is that the light field camera is robust and self-contained, which allows easy-to-use application in heliostat fields. In this study, light-field camera measurements were performed with flat mirrors and a curved mirror under laboratory conditions. In order to resolve the surface of the mirror surfaces, several methods to impose contours of the mirror surface have been studied, including dirt, small water droplets, scattering of low-power laser light, and paper-marks. A wide range of camera-to-mirror distances between 43 cm and 5 m have been studied. Greater distances allow the capture of the entire surface, but decrease the precision of depth measurements. In order to obtain high precision measurements while being able to capture the entire surface, a compositing strategy has been developed, combining several light-field image measurements. The overall accuracy of the system was improved further by averaging measurements over several image frames. Subsequently, the reconstructed surface points have been fed to a ray-tracing algorithm realized in Matlab/Python. Results in this study are able to resolve the shape of small concentrators to sub-millimetre precision when taking pictures at a distance of 0.4 m. |
| Sponsorship | Advanced Energy Systems Division Solar Energy Division |
| File Format | |
| ISBN | 9780791856840 |
| DOI | 10.1115/ES2015-49649 |
| Volume Number | Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials |
| Conference Proceedings | ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum |
| Language | English |
| Publisher Date | 2015-06-28 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Radiation scattering Wind Scattering (physics) Stress Light sources Design Thermal expansion Composite materials Solar energy concentrators Algorithms Electromagnetic scattering Lasers Imaging Lenses (optics) Drops Ray tracing Shapes Sensors Manufacturing Mirrors Photogrammetry Matlab |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|